
BCL Barix Control
Language
Basic like programming language for
Barix Automation products and Audio
products running the ABCL Virtual
Machine

Programmers
Manual
Version 1.20
Released 6th January 2016
Supports:

• Barionet 50, 100 (LX & EX XPort)
• Annuncicom family
• Exstreamer family
• Instreamer 100
• IPAM family

Revision History
Version Date Initials Notes

1.10 30/03/10 PK Described changes implied by frame based
buffering.

1.10 05/05/10 KK Do not write into _TMR_
1.11 02/06/10 PK Link between file and audio

03/06/10 JP/PK Added the target parameter for Tokenizer
 New Barix logo

1.12 08/05/10 KK Corrected explanation of TCP, COM READ
timeouts

17.08.10 JP BCL.1.5 parameter changes incorporated.
1.13 10/11/10 PK Programmable 1-wire interface on Barionet 50

03/12/10 PK Changed front page graphics
21.12.10 JP No of supported Handles(16) updated.
08/02/11 PK Corrected %H printf parameter.

1.14 22/02/11 PK Added new audio parameters: bass/treble
frequency setting

1.15 02/09/11 PK More details about Setup reading/writing.
Example extended.
More detailed description of system variables
and INSTR.
Function FIND described.

1.16 19/01/12 PK Added G.722 support
1.17 18.05.12 PK Added 5-band parametric equalizer

30.05.12 PK Added AEC control bit into audio “quality”
parameter

10.10.12 PK Note on using LINK with raw UDP
1.18 25.02.13 PK Audio delay described in full-duplex (#47.83)

Last packet timestamp audio status parameter
for end of stream detection with LINK command.
MP3 encoding with bitrate: CBR, VBR, ABR
(#48.31)
Min and max jitter added to audio status:
(#48.32)
Microphone gain from 12dB up to 43.5dB on VLSI
(#53.82)

09.09.13 PK Removed TCP handle limitation to 5 handles
29.04.14 PK Updated: Jitter is in milliseconds

1.19 21.08.14 PK Added new RTP payload type 113
Added long directory listing

1.20 06.01.16 PK Updated the SNMP features for the Barionet 50

References

Document Date Author

Table of Contents

 1 Introduction ...1
 1.1 Notation ...1
 1.2 Supported devices ..2

 2 Development Tools ...3
 2.1 Editor ..3
 2.2 Tokenizer ..3
 2.3 Web2cob ...3
 2.4 Program upload ...5
 2.5 Batch files ..5

 3 BCL basics ..7
 3.1 Starting with BCL ..7

 3.1.1 Simple program ..7

 3.1.2 Comments ..7

 3.1.3 Command delimiters ...7

 3.1.4 Multi-line commands ...7

 3.1.5 Recommended structure of BCL programs 8
 3.2 Syntax overview ..8

 3.2.1 Data types and variables ...8

 3.2.2 Procedures and functions ...9

 3.2.3 Conditional statements ...9

 3.2.4 Program flow control ...9

 4 Integers ..11
 4.1 Integer constants ..11
 4.1 Integer variables ...11
 4.2 Integer expressions ..11
 4.3 Integer functions ...11
 4.4 Real numbers ...12
 4.1 Integer Arrays ..12

 4.1.1 Array search ...12
 4.2 Bit operations ..13

 5 Strings ..14
 5.1 String constants ..14
 5.2 Escape sequences ...14
 5.3 String expressions ..14
 5.4 String variables ...14
 5.5 Binary arrays ...15
 5.6 String functions ...16

 5.6.1 String/Integer conversions ..17

 5.6.2 Formatted conversions - SPRINTF$ 17
 5.7 Binary array functions ..19

 6 Execution fl ow control commands 21
 6.1 The END command ..21
 6.1 Labels ...21
 6.2 Unconditional jump ...21
 6.3 The FOR-NEXT loop ...21
 6.4 Subroutines ..22
 6.5 Conditional statements 22

 6.5.1 Multiline IF ..22

 6.5.2 Single line IF ...23

 6.5.3 Boolean expressions ...23

 6.5.4 Multiple branching depending on an integer value 24
 6.6 Time ...24
 6.7 Events ..24

 6.7.1 Timers ..24

 6.7.2 UDP event ..25

 6.7.3 CGI event ...25

 6.7.4 Handling I/O events ...26

 6.7.5 Error Handling ..26
 6.8 The LOCK command ..26

User defi ned functions ..29

 7 I /O stream functions ..31
 7.1 Function overview ...31

 7.1.1 Open and close ..31

 7.1.1 Write ...31

 7.1.2 Read ...31

 7.1.3 Stream types ..33

 7.1.4 Other functions ..33
 7.2 The UDP network protocol 33

 7.2.1 Receiving UDP packets ...34

 7.2.2 Sending UDP packets ..34

 7.2.3 Multicast ..35
 7.3 The TCP network protocol 35

 7.3.1 Listening socket ...35

 7.3.2 Blocking TCP connection ..36

 7.3.1 Non-blocking TCP connection ..36

 7.3.2 TCP close ...36
 7.4 Serial port ..37
 7.5 SETUP ...38
 7.6 The USB filesystem (not supported on Barionet)
..39

 7.6.1 File access ...39

 7.6.2 Directory access ..40
 7.7 The local flash filesystem 41

 7.7.1 Reading files ...41

 7.7.2 Writing files (Barionet only) ..42
 7.8 Keyboard and display interface (audio devices
only) ...42

 7.8.1 Display ...42

 7.8.2 Keyboard ...44

 7.8.3 IR interface (audio devices only) 44
 7.9 The Wiegand reader (Barionet 100 only) 45

 7.9.1 26-bit Wiegand reader ..45
 7.10 1-wire interface (Barionet 50 only) 46

 7.10.1 Device addresses ..46

 7.10.2 File interface ..47

 7.10.3 Bus transactions ..47

 7.10.4 Example ...49

 8 Audio interface (audio devices only) 51
 8.1 Opening audio ...51

 8.1.1 The MODE parameter – audio format 51

 8.1.2 The FLAGS parameter – open options 51

 8.1.3 The QUALITY parameter – sampling rate, etc. 52

 8.1.4 The DELAY parameter – delayed playback 54

 8.1.5 RTP encoder parameters FRAME_DURATION and SSRC

..54
 8.2 Data formats ..54

 8.2.1 PCM audio data ..54

 8.2.2 Raw data mode ..55

 8.2.3 RTP data mode ...55

 8.2.1 RTP payload types ...57
 8.3 Reading audio status ..59
 8.4 Setting audio parameters 61
 8.5 Flushing decode buffer 66
 8.6 Flushing encode buffer 66
 8.7 Closing audio ...66
 8.8 Audio tunelling (audio devices only) 66

 8.8.1 File playback ..66

 8.8.2 Decoder ...67

 8.8.3 Detecting end of stream ..67

 8.8.4 Encoder ..68

 8.8.5 Examples ...68

 9 Miscellaneous functions ...69
 9.1 Network functions ...69
 9.2 Diagnostic functions ...69
 9.3 Cryptographic functions 69

 10 Direct hardware access ..71

 11 SNMP Interface ...72
 11.1 Integers ..72
 11.2 Text strings (audio devices and Barionet 50) 72
 11.3 Traps ...72

 11.3.1 Barionet 100 ...72

 11.3.1 Audio devices and Barionet 50 73

 12 WEB interface ...74
 12.1 HTML tags ..74

 12.1.1 Displaying variables in webpages 74

 12.1.2 Calling a subroutine from a webpage 75
 12.1 Variable setting by CGI 75
 12.2 CGI handling in the BCL 76

 14 Preprocessor ...78
 12.1 Preprocessor directives 78
 12.2 Using the preprocessor 78

 13 Interpreter information ..80
 13.1 Execution speed ..80
 13.2 Runtime environment limitations 80
 13.1 System variables ..80

 14 Debugging ...82
 14.1 Error messages ...82

 17 Example programs ...85
 14.1 Playing an MP3 file from the USB filesystem . 85
 14.2 Record audio into an MP3 file 85
 14.3 Sending an email ..85
 14.4 Streaming MP3 over RTP 86
 14.5 RTP Sender ..86
 14.6 TCP serial gateway ...86
 14.7 The Wiegand reader ...88
 14.1 Simple internet radio player 89
 14.2 RTP player with statistics 90

 15 Syntax summary ..92
 15.1 Variables, Constants, Expressions 92
 15.1 Declarations ..93
 15.1 Statements and functions 94

 19 Appendix A – obsolete or unimplemented

functions ...97
 19.1 Audio interface ..98

 20 Appendix B – BIN / DEC / HEX conversion 99

 1 Appendix C – BCL version 2 100

Alphabetical Index ...101

Legal Information ...104

 1 Introduction

The Barix Control Language (further referred to as "BCL") is a high level, interpreted
control language, used to program certain Barix devices (further referred to as "BCL
devices) .

The aim of BCL is to allow system integrators, OEM developers and skilled end
users to customize Barix BCL devices to a very high degree by using essentially the
syntax of the well-known BASIC language. It has built-in support for various
input/output interfaces and for various network protocols.

BCL is very easy to learn and allows instant results for most people experienced in
a higher level programming language.

 1.1 Notation

When introducing command/function syntax, the following notation is used in this
manual:

Notation

symbol

Meaning

N Integer constant, value between -2.147.483.648 and +2.147.483.647
can be also written in hexadecimal notation (corresponding range is
from &H00 to &HFFFFFFFF)

L Line number. Line numbers are unsigned integers from 1 to 32767

Q$ Quoted string constant of length up to 255 characters

S$ string variable (zero terminated). With some restrictions, string
variables can be used to hold binary data (all possible 8-bit values,
including 0)

A Integer array

V integer variable or array element V(E [, E])

H file handle (integer in range 0..15)

F() function returning integer

F$() function returning string

E expression of type integer, typically a result of arithmetic operations
with N, V, and F()

E$ expression of type string, the result of concatenating Q$, S$, and F$()

bE boolean expression

[....] square brackets are used to indicate that the bracketed part is
optional

{...|...|...|...
}

curly brackets are used together with vertical bars to list possible
options

Barix AG | 1/110

 1.2 Supported devices

BCL is currently supported by the automation controller Barix Barionet and all Barix
Audio products including the IP Audio Module family.

Furthermore supported are all legacy Audio products except for the Exstreamer
Wireless.

See table below for I/O protocols supported on above mentioned devices.

I/O

protocol

Barione
t

100

Barione
t

50

IP
Audio

Module

Exstream
er

family

Instream
er

family

Annuncico
m

family

TCP/UDP
networking

● ● ● ● ● ●

Serial port(s) ● ● ●1 ● ● ●2

Web interface ● ● ● ● ● ●

Audio output ● ● ● ●

Audio input ● ● ●

USB filesystem ● ●3 ●4 ●5

One-wire
sensors

● ●

Programmable

one-wire
interface

●

TFTP ●

Wiegand reader ●

Flash write ●

1 Two serial interfaces available
2 Two serial interfaces available on Annuncicom 100, the second one being RS485
3 Not available on older hardware versions prior to Exstreamer 100
4 Not available on older hardware versions prior to Instreamer100
5 Not available on older hardware versions prior to Annuncicom100

Barix AG | 2/110

 2 Development Tools

This section describes usage of tools required for development of a BCL program.
Development tools are also described in detail in the Barionet Development Kit
Manual document, which is available from the Barix website.

 2.1 Editor

BCL programs can be developed with any text editor – as long as the editor
supports standard ASCII files with CRLF newlines1. An example of such an editor is
the Notepad application shipped with the Microsoft Windows operating system.
Modern development tools – like the free Eclipse development system – allow
comfortable editing with syntax highlighting, the use of such tools is however
optional.

BCL source program files are expected to have .bas extension with the exception
of files to be preprocessed (for details, see section , page 78).

 2.2 Tokenizer

The BCL language interpreter can run programs in Barix TOK format. In this format,
individual tokens (atomic part of the source code – operators, function and variable
names, constants,...) of the source BCL file are encoded in a space efficient way in
order to improve execution speed.

The tokenizer tool is used to convert the ASCII BCL program code it into the Barix
TOK format.

Command prompt call:
tokenizer target program.bas

where program.bas is the name of the the source file and target is the target
platform for the BCL program. Supported targets are:

Target
name

Devices

barionet Barionet 100

barionet50 Barionet 50

phoenix FL COMSERVER PRO

audio All Barix audio products and IPAM based
products

Note: Make sure that you provide the proper target for your application. TOK file
build for a different platform might not run properly.

The tokenizer will tokenize the program and create program.tok file, it also
creates ERRORS.HLP file if it doesn't exist. The ERRORS.HLP file is used for
generating syslog messages in clear text and therefore it is recommended to
include this file in the .cob file (see the next section).

 2.3 Web2cob

1 As common in DOS and Windows operating systems

Barix AG | 3/110

The resulting .tok file generated by the tokenizer must be stored in a .cob file (for
debugging and/or documentation reasons together with the .bas source file) plus
any files needed by the project (HTML, graphics etc). The tool web2cob can be used
to wrap the contents of a directory into a single COB file which can be directly
loaded on a Barix device.

Command prompt call:
web2cob /o barionetbcl.cob /d BCL

/o defines the name of the output cob file
/d defines which directory should be packed

Note: A cob file exceeding 64 Kilobytes will use two or more flash memory pages.
This has to be taken into account when uploading - to prevent unintended
overwriting of other flash content.

Note: Maximal allowed size of files in a cob file is 64kB. Larger files are not
supported.

Barix AG | 4/110

 2.4 Program upload

The above mentioned cob file can be uploaded into a flash memory page on the
target hardware using the TFTP protocol (Barionet) or via the web interface.

A comfortable graphical client or a command-line TFTP tool can be used. For
example a command-line utility called tftp shipped with the Microsoft operating
system can be used in the following way:

tftp -i 192.168.0.10 PUT basictest.cob WEB4

(In this example COB file basictest.cob is uploaded in the flash page WEB4 of the
device with the IP address 192.168.0.10)

There should be a short pause of approximately 3 seconds after each upload in
order to allow the Barix BCL device to store the file internally.

WARNING: Incorrect timing may result in corrupted files.

Note: Tftp uploading of BCL .cob files to certain Barix BCL devices is possible
only when these devices are in the bootloader mode (the IP Audio Module is an
example of such a device).

Barix recommends using the supplied batch files (see the next section).

 2.5 Batch files

To make the tokenizing, web2cob and the tftp upload easier, Barix provides the
bcl batch file that should be used in the following way:

bcl <name> <IP address>

where <IP address> is the IP address of your BCL device and <name> is a name of
a subdirectory containing the BCL source files. The source file has to have the
same name as the subdirectory. In the following example program myprog is
loaded into flash page 4 of the device with IP address 192.168.2.145. The directory
myprog contains BCL source myprog.bas.

bcl myprog 192.168.2.145

Content of the bcl.bat follows:

cd %1
del *.bak
..\tokenizer %1.bas
if errorlevel 1 goto quit
cd ..
web2cob /o %1.cob /d %1
tftp -i %2 put %1.cob WEB4
goto endit
:quit
echo "ERROR - TOKENIZER REPORTS FAILURE"
cd ..
:endit

Barix AG | 5/110

Note: The bcl.bat file can be modified to upload .cob files to another WEB
page. Consult the documentation of the BCL device for the list of the WEB pages
available for user programs.

Barix AG | 6/110

 3 BCL basics

 3.1 Starting with BCL

 3.1.1 Simple program
Here is a simple program to test that tokenizer, tftp uploading, BCL interpreter in the BCL
device and syslog daemon1 are all working well:

SYSLOG "Hi, everything is OK"
END

After the program is uploaded to the device and interpreted, messages similar to
the following should appear in the syslog:

Dec 2 15:53:53 192.168.2.145 BARIX BCL Interpreter, V1.5
Dec 2 15:53:53 192.168.2.145 Hi, everything is OK.
Dec 2 15:53:53 192.168.2.145 BCL end

BCL keywords are case insensitive. Parameters should be separated by a comma
(',', ASCII character 44). For functions, the parameters should be in parenthesis, for
example:
I=PING("192.168.2.18",50)

even if the value is not used:
PING("192.168.2.18",50)

 3.1.2 Comments
It is possible to have useful comments inside the source BCL file. The ' (apostrophe,
ASCII code 39) character is used for commenting. All text after the apostrophe sign
is ignored till the end of the line (CRLF).

'This is our first program!
SYSLOG "Hi, everything is OK" 'send message using syslog
command
'end of our first program!
END

Functionally this program is exactly the same as the first program so the syslog
output is identical:

Dec 2 15:53:53 192.168.2.145 BARIX BCL Interpreter, V1.5
Dec 2 15:53:53 192.168.2.145 Hi, everything is OK.
Dec 2 15:53:53 192.168.2.145 BCL end

 3.1.3 Command delimiters
Most BCL statements can be delimited with new line (CRLF, ASCII codes 13,10) or
':' (colon, ASCII code 58) characters.2 Comments and DIM statements (see section
4.1 Interger Arrays on page 12) must be terminated with CRLF.

 3.1.4 Multi-line commands
It is possible to write multi-line commands by putting an '&' character (ampersand)
at the end of the line to be continued. An example follows:

SYSLOG "1":SYSLOG"2":SYSLOG &

1 For more information about syslog, see section , page
2 Using space (' ', ASCII code 32) as separator, which was possible in previous versions, is considered

deprecated and will not be supported in future versions of BCL.

Barix AG | 7/110

"3"

 3.1.5 Recommended structure of BCL programs
The BCL program code should start with the definitions and dimensioning of the
variables used and end with the END command or with a carriage return/line feed
(CRLF) when using the GOTO or RETURN statement.

Code examples:
DIM CR$(3)
...
...
END
[EOF]

DIM CR$(3)
...
10 A$=...
...
 GOTO 10
[EOF]

 3.2 Syntax overview
This section is provides an introduction to the BCL syntax. It is not intended to
provide a complete syntax of BCL but an overview of most important language
elements and constructs. For more details refer to section 4 and following. The BCL
grammar can be found in chapter 15.

 3.2.1 Data types and variables
There are two basic types of constants in BCL: integers and strings. Integer
constants can be written in decimal notation (signed), e.g. 537, +26 or -17; or in
hexadecimal notation (unsigned) starting with prefix &H, e.g. &H2FA (762 decimal).

String costants are quoted using the ' " ' character (ASCII 0x22), e.g. "hello".

Three types of data structures are supported by BCL: integer variables, integer
arrays and strings. Every variable has a unique name composed of ASCII letters,
digits and underscore ('_', ASCII 0x5F). Variable names must not start with a digit.
Variable names are case insensitive and only the first five characters are
significant.

Variables are declared with the DIM command:
DIM int ' integer variable
DIM array(10,10) ' integer array
DIM str$ ' string

All variables are initialised to 0, strings are initialised to an empty string.

Variables and constants can be combined in expressions, however, only elements
of the same type can be combined:
3*b+(26*a-7)/c ' integer expression
"hello "+a$ ' string expression

A value is assigned to a variable in an assignment, e.g.:
a=10
b$="hello" + " " + "world"
d=(a+b)/2

Barix AG | 8/110

Read more about types and variables in sections 11 and 14.

 3.2.2 Procedures and functions
Built-in BCL procedures are called by the procedure name optionally followed by
comma-separated procedure parameters. E.g.:
WRITE 1,a$,10

Procedures do not return any value.

Built-in functions as well as user defined functions are called by their name,
followed by the opening bracket '(' (ASCII 0x28), an optional comma-separated list
of function parameters and closed by the closing bracket ')' (ASCII 0x29).

Functions always return a value (a string or an integer) and therefore can be
called in an expression. Functions can be called as a statement, in which case the
return value is discarded.

Examples:
l=LEN("Hello world!") ' function call in an assignment
a$="Total sum is "+STR$(a) ' function call in an expression
my_function() ' user function called as a statement

Read more about user defined functions in chapter , more about integer functions
in chapter 4 and more about string functions in chapter 5.6.

 3.2.3 Conditional statements
Conditional program execution is achieved by using IF-THEN-ELSE construct. For
example:
IF a<b THEN min=a ELSE min=b

The program part after THEN is executed only if the condition after IF is true. The
ELSE branch is executed only if the condition is false.

Conditional expressions can be spread over several lines or the ELSE branch can
be omitted.

Example:
IF LEN(a$)>100 THEN

SYSLOG "String too large"
GOSUB 2000

ENDIF

Read more about conditional statements in chapter 6.5

 3.2.4 Program flow control
Program flow can be controlled by the following statements: GOTO, GOSUB-
RETURN, FOR-NEXT.

GOTO is an unconditional jump to a specific label. Label is a unique numeric
mark in the program .

Example:
10

SYSLOG "Current time is "+SPRINTF$("%1t",0)
DELAY 1000
GOTO 10

Barix AG | 9/110

GOSUB is a subroutine call and is similar to GOTO. The difference is that GOSUB
uses a stack to remember the original place where the subroutine was called from.
RETURN statement is then used to return from the subroutine and continue in the
original code.

Example:
...

IF time>1000 THEN
GOSUB 1000

ELSE
WRITE 1,a$,10

ENDIF

...

1000
SYSLOG "Connection timed out"
CLOSE 1
RETURN

The FOR-NEXT construct allows to repeat a specific part of the program (called
loop) several times.

Example:
a$=""
FOR i=1 TO 10

a$=a$+" "+STR$(i)
NEXT i
SYSLOG a$

Read more about program flow control in chapter 6.

Barix AG | 10/110

 4 Integers

 4.1 Integer constants
Integer constants (denoted N in this document) can be written as ordinary signed
integers. They must be in the range from -2147483648 to +2147483647. They
can be also written in hexadecimal notation using &H, eg. &H1A instead of 26.

 4.1 Integer variables
Integer variables are identified by their name (case insensitive), of which only the
first five characters are significant. Variable names must begin with a letter and
can consist only of alphanumerical characters and underscores. Integer variables
can hold integers in the range allowed for integer constants.

Integer variables can be assigned values using the assign operator = with syntax
V=E

where V is the name of the variable and E is an integer expression.

Integer variables should be declared with the DIM command at the beginning of
the program for better code legibility. If DIM is omitted, variables are declared
implicitly.

Integer varibles are always initialized to 0 at startup (no matter if DIM is used or
not).

It's possible to declare multiple variables with one DIM command. Syntax of DIM is
the following:

DIM NAME1[,NAME2[,NAME3...] ...]

Example:
DIM a,b,c

a=17
b=3*a
c=b+5

 4.2 Integer expressions

Integer expressions can be formed using the following operators

Integer operators (descending priority of evaluation)

() brackets

+,- unary sign operator

^ exponentiation

*,/,
%

multiplication, division, remainder(modulo)

+,- addition, subtraction

Operators can be applied to integer constants, integer variables and integer
functions.

 4.3 Integer functions
Functions returning integer values are called integer functions. Several built-in
functions are available and it is also possible to create user defined functions, see
section , page 29.

Barix AG | 11/110

 4.4 Real numbers
BCL does not support floating point types. For most applications floating-point-like
operations can be easily created by scaling values as in the following example.

SYSLOG "Computing the circumference and the area of a circle"
radius = 13 'set radius
phi = 314 'set approximately the value of phi times 100
circum = 2*phi*radius 'compute circumference
area = phi*radius^2 'compute the area
SYSLOG "Given circle of radius"+STR$(radius)+ &

", the circumference is " &
 + STR$(circum/100)+"."+STR$(circum%100)+" and the area is "+ &
 STR$(area/100)+"."+STR$(area%100)+" ."

To print numbers in fixed decimal point format use SPRINTF$ with the %F flag (see
section 5.6.2 on page 17).

 4.1 Integer Arrays

It's possible to use one dimensional or two dimensional arrays of integers. Such
arrays are declared by the DIM command with the following syntax:

DIM NAME(INDEX) - for a one dimensional array
or
DIM NAME(INDEX1,INDEX2) - for a two dimensional array

where NAME is the name of the array and and INDEX, INDEX1, INDEX2 are the
highest possible indices. As indexing of array elements starts from zero, an array
declared with the highest possible index INDEX will be of size INDEX+1. For
example an array declared as DIM NUM(5) has 6 elements numbered from 0 to 5.
Elements of the array can be accessed using the syntax NAME(INDEX) or
NAME(IND1,IND2). Arrays are initialized to 0 at startup.

Code Example:
 DIM OLD(2) 'declare array of size 3
 DIM NEW(2) 'declare array of size 3
 DIM DIFF(2) 'declare array of size 3

....

 DIFF(0) = NEW(0)-OLD(0)
 DIFF(1) = NEW(1)-OLD(1)
 DIFF(2) = NEW(2)-OLD(2)

 4.1.1 Array search

FIND (E, A, [E0])
Searches a one- or two-dimensional integer array (table) A for a key E. Returns the
row of the first occurrence of the key E in array A (return value counts from 0, i.e.
return value 0 means first row in the table), or -1 if not found. The optional
parameter E0 specifies the column to search, 0 stands for the first column. If not
provided the first column is searched.

This function is useful for implementation of various lookup tables since it provides
a fast search in oppose to conventional FOR loop. Example: address lookup in a
table of pairs <IP address,port>

Barix AG | 12/110

 4.2 Bit operations
Bit operations are implemented with the syntax of integer functions. The following
bit operations are available:

NOT (E)
Bitwise NOT operation.

AND (E [, E1 [, ...]])
Bitwise AND operation. If only E is given, returns E.

OR(E [, E1 [, ...]])
Bitwise OR operation. If only E is given, returns E.

XOR (E [, E1 [,...])
Bitwise XOR operation. If only E is given, returns E.

SHL (E, E0)
Bitwise shift left of E by E0 bits.

SHR (E, E0)
Bitwise shift right of E by E0 bits.

Note: Some bitwise operations have the same names as logical operations and
similar syntax, but they can be distinguished by the type of their parameters.

Barix AG | 13/110

 5 Strings

In BCL strings are NULL terminated and indexed from 1. (Future releases: please
note change 2, chapter 1, page 100)

 5.1 String constants
String constants are always quoted and their maximum length is 255 characters.
An example of such a constant is the "Hi, everything is OK" in the following
program:

SYSLOG "Hi, everything is OK"
END

 5.2 Escape sequences
Escape sequences can be used to include special ASCII characters in a string
constant. Escape sequence counts as a single character when calculating string
length.

Escape sequences

\a ASCII character 7

\b ASCII character 8

\t ASCII character 9 (horizontal tab)

\n ASCII character 10 (LF – line feed)

\v ASCII character 11 (vertical tab)

\f ASCII character 12

\r ASCII character 13 (CR - carriage return)

\\ ASCII character 92 (backslash)

\" ASCII character 34 (")

\
xhh

ASCII character with hexadecimal index equal
to hh

Code example:
V="This string contains CRLF\r\n"

 5.3 String expressions
String expressions can be formed by concatenating string constants, string
variables and string functions using the + operator. One simple example is the
following modification of the first program:

SYSLOG "Hi,"+" everything is OK" 'string expression example

 5.4 String variables
String variables are identified by their names (case insensitive), of which only the
first five characters are significant. String variable name must begin with a letter,
can consist only of alphanumerical characters and underscores, but the last
character has to be '$'. The tokenizer generates a warning message when
variables are defined using the same first five characters.

String variables can be assigned values using the assign operator = with syntax
S$=E$

Barix AG | 14/110

where S$ is the name of the variable and E$ is a string expression.

Example:
FIRST$ = "Hi," 'assign value to the FIRST$ variable
SECOND$ = " everything OK!" 'assign value to the SECOND$ variable
CONCAT$ = FIRST$+SECOND$
SYSLOG CONCAT$ 'syslog concatenation

Syslog output will be the same as in the previous example.

String variables should be declared with the DIM command at the beginning of the
program for better code legibility. If DIM is omitted, variables are declared
implicitly.

At startup string variables are initialized to an empty string.

By default the maximum length of string variables is 256 characters. String
variables longer then 256 characters must be declared using the DIM command,
with syntax DIM NAME$(SIZE), as in the following example:

DIM LONG$(600) 'LONG$ can hold 599 characters
LONG$="........" 'assign 8 dots
LONG$=LONG$+LONG$+LONG$+LONG$ 'assign 32 dots
LONG$=LONG$+LONG$+LONG$+LONG$ 'assign 128 dots
LONG$=LONG$+LONG$+LONG$+LONG$ 'assign 512 dots

This program creates a string consisting of 512 dots to syslog (useful probably only
as an example). For normal use, string variables are terminated with a trailing zero
character, so a variable dimensioned to a size of 600 can hold a string of
maximum 599 characters.

Commonly used string constants (like the CR/LF newline sequence) can be defined
in a string, which can save code space. However, these strings should be
dimensioned with the DIM command before assigning them to avoid excessive
memory usage.

DIM CR$(3)
CR$="\r\n" 'newline sequence

Note: String array is not available in BCL. If needed, it can be simulated with one
long string using string functions to access substrings.

 5.5 Binary arrays
Strings can be used as binary buffers (e.g. when reading/writing files) or as bit or
byte arrays. E.g. when interfacing to a security system with 300 rooms where there
is an 8-bit state for each room, it is better to store the states into a string variable
(DIM it with a length of 300 bytes) instead of an integer array. This way memory
can be saved because an integer array of the same size would need four times
more memory (integers are 32-bit).

When storing binary data into a string, the string concatenation operation can not
be used, since binary data may contain the 0 character which is a string terminator
in text mode. Therefore it's always necessary to work with the string and its length
(in separate variable) and concatenate strings with MIDCPY. To access elements of
a binary array use MIDSET/MIDGET commands.

For string calculations BCL uses a temporary buffer with a size of the largest string
variable declared (if it exceeds 256 bytes a warning will be issued to the tokenizer
console). If the string is not going to be used for calculations (typically if it is a
binary working buffer for MIDSET/MIDCPY/MIDGET commands), the string name

Barix AG | 15/110

should start with the "_M" prefix to avoid changing of the internal string buffer. The
"_M" prefix counts as two of the five significant variable name characters.

 5.6 String functions
The BCL language provides a variety of functions for working with strings. Note
that in all the following examples strings are indexed from 1.

LEN (E$)
Returns the length of the string E$ as an integer (excluding the terminating NULL
character).

Example:
A=LEN("SHORT")

will store 5 in variable A

INSTR (E, E1$, E2$)
Searches for substring E2$ in a string E1$ starting from the position indexed by E
up to the end of the string (the first character \0 in the string). E counts from 1.
On success INSTR returns the absolute position of E2$ in E1$, counting from 1 (for
E2$ being a prefix of E1$). If E2$ is not found returns 0. Search for an empty string
E2$ returns 0.

If E is negative, searches from index -E up to the next character \0. This can be
used for searching in binary arrays or in a concatenation of multiple \0 terminated
ASCII strings.

Example:
A$= "is it here?"
B$= "i"
POS=INSTR(2,A$,B$)

will store 4 in variable POS as we start the search from "s" on.

Future releases: please note change 1, chapter 1, page 100.

MID$ (E$, E1 [, E2])
Returns the sub-string of E$ consisting of E2 characters starting from the position
E1. E1 counts from 1. In the case that E2 is omitted, returns all characters from
position E1 to the end of E$.

Example:
A$= "is it here?"
B$=MID$(A$,4,2)

will store "it" in variable B$.

If a string variable is used as a binary array MID$ accepts a string variable S$
instead of a string expression E$.

LCASE$ (E$)
Returns a string produced by converting all characters of E$ to lower case.

For example, after executing
OUT$=LCASE$("LoWeR")

the value of OUT$ will be "lower"

UCASE$ (E$)
Returns a string produced by converting all characters of E$ to upper case.

Barix AG | 16/110

For example, after executing
OUT$=UCASE$("Upper")

the value of OUT$ will be "UPPER"

 5.6.1 String/Integer conversions
ASC (E$)
Returns ASCII code of the first character in the string E$.

Example: Value 32 is stored into variable N after execution of
N=ASC(" there is a space at the beginning of this string")

CHR$ (E)
Returns character (string of length one) with ASCII code E.

Example: S$ equals to " " after execution of
 S$=CHR$(32)

VAL (E$)
Converts the initial portion of the string E$ to an integer and returns the value. E$
must be decimal.
Examples:

a=VAL("123")

returns 123.

a=VAL("09BA")

return 9.

a=VAL("Fred")

returns 0.

STR$ (E)
Returns a string containing the ASCII representation of the integer value E.

STIME (E$)
returns the time E$ converted to seconds since 1/1/1970. Format of the E$ string
is "YYMMDDhhmmss". See also SPRINTF$ below.

 5.6.2 Formatted conversions - SPRINTF$

SPRINTF$ (E$, E)
Converts the integer value E into a string using C-style formatting specified in the
format string E$ and returns the result. The format string uses the common "C"
notation but only one parameter is allowed

Code example:
A$=SPRINTF$("the value is %u",1922)

will store the string "the value is: 1922" in the variable A$

 5.6.2.1 Integer to string conversions

The following formats are supported:
%[[–|0]n]u unsigned 16 bit integer
%[[–|0]n]lu unsigned 32 bit integer
%[[–|0]n]d signed 16 bit integer

Barix AG | 17/110

%[[–|0]n]ld signed 32 bit integer
%[[–|0]n]x 16 bit hex value
%[[–|0]n]lx 32 bit hex value
%c as character in ASCII

where:
"-" aligns to the left side,
"0" adds the leading zeros,
"n" number of character positions for the output

%0.xF can be used to print integers in fixed decimal point format, the decimal
point is moved to the left by x places to divide the number by 10x This feature is
available only on the Barionet.

Code example:
A$=SPRINTF$("%0.2F",123)

A$:"1.23"

 5.6.2.2 Version information

%V firmware version (e.g. B1.29)
%1V the same as the above including "_" (underscore) and the build date
YYYYMMDD (e.g. B1.29_20040514)

 5.6.2.3 Network information

%H MAC address without separators (e.g. 00204A804087)
%1H MAC address with colon separators (e.g. 00:20:4A:80:40:87)

The parameter E must be set to 0.

%A access to current network variables (e. g. 192.168.0.2) (see below)
%1A same with leading zeroes (e. g. 192.168.000.002)

variable returned depends on the parameter E:
1 IP address (e. g. 192.168.0.2)
2 Netmask (e. g. 255.255.255.0)
3 Default Gateway (e. g. 192.168.0.1)
4 Domain Name Server 1 "DNS 1" (e. g. 192.168.0.1)
5 Broadcast address (e. g. 192.168.0.255)

%lA takes a parameter E encoding an IP address in a 32-bit signed integer and
outputs it in the dotted quad notation. Outputs the bits in the following order, 0
being the least significant bit, 31 the most significant: <0-7>.<8-15>.<16-
23>.<24-31>.

%1lA same with leading zeroes

 5.6.2.4 Time to string conversion

%xt converts either the system time or the provided argument (see the bit 4
below) into a time string. The value x is bitwise OR of any combination of the
below bits.

The full time format is: [v][yy]YYMMDDhhmm[ss][w]

By default (if x is 0) prints the system time in format YYMMDDhhmm (e.g.
0405140914).

Barix AG | 18/110

bit function

0 including seconds ss (e.g. 040514091459)
1 including the leading century yyYY (e.g. 200405140914)
2 adjust for a local time zone and DST (in future releases)
3 leading character for time valid ("2" invalid time, "3" valid time)
4 use 32-bit parameter E as time source (number of seconds since 1/1/1970)
instead of the system time
5 including w - one-digit week-day number in range 1-7, 1 is Sunday (e.g.
04051409145)

Code example:
A$=SPRINTF$("%1t",0)

Result depends on system time, possible output for example
A$: "00490606000002"

 5.7 Binary array functions

MIDSET S$,E0,E1,E
stores the E as a byte (E1=1), a word (E1=2), or a double word (E1=4) at position E0
(starting from 1) of the string variable S$ (binary array).

Words and double words are written in the little endian (Intel) format by default. If
E1 is negative (-1, -2, -4) the value is written in the big endian format.

Code example:
BA$ = " " ' hex 2020202000
MIDSET BA$,2,1,64

will result in BA$ (in hex): 2040202000

MIDGET (S$,E0,E1)
Returns a byte, word, or double word (E1=1, 2, and 4 respectively) at position E0
(starting from 1) of the string variable S$ (binary array).

The value is read in the little endian (Intel) format by default. If E1 is negative (-1,-
2,-4) the value is read in the big endian format.

MIDCPY S$,E0,E1,S1$[,E2]
replaces E1 bytes at position E0 (starting from 1) of the string variable S$ with E1
bytes from the beginning of the string variable S1$. If optional parameter E2 is
used, replaces with E1 bytes of string variable S1$ starting from offset E2.

Code example:
A$= "Come here!"
B$= "Look there!"
MIDCPY A$,1,5,B$

will result in A$ containing "Look here!"

Another code example:
A$= "Come here!"
B$= "Look there!"
MIDCPY B$,6,5,A$,6

Barix AG | 19/110

will result in B$ containing "Look here!!"

Barix AG | 20/110

 6 Execution flow control commands

 6.1 The END command
END command stops the interpreter. It has the following syntax
END [E$]

where the optional parameter E$ can be used to start another BCL program. In that
case, E$ should contain the name of the program to be executed.

END statement can be used anywhere in the program.

 6.1 Labels
Line numbers are optional in BCL, but they are essential for jumping/subroutine
calls. If a line number is used, it must be placed at the beginning of the line. Line
numbers can be used in any order, but they must be used uniquely.

 6.2 Unconditional jump
Unconditional jump to label L has the syntax
GOTO L

After interpreting this command the BCL interpreter continues the execution
starting from the line labeled L.

Code example:

10 SYSLOG "Neverending loop"
 GOTO 10

 6.3 The FOR-NEXT loop

The syntax of the FOR-NEXT loop is

FOR V=E1 TO E2
.....
NEXT [V]

First, V is assigned the result of the expression E1. Then all statements up to the
matching NEXT statement are executed. When the NEXT statement is reached, V is
incremented and compared with E2. The execution restarts at the the FOR
statement as long as V is less than or equal to E2. If V is larger than E2, the loop is
terminated and the execution continues after the NEXT statement.

Code example:
 DIM OLD(25) 'declare one dimensional array, size 26
 DIM NEW(25) 'declare one dimensional array, size 26
 DIM DIFF(25) 'declare one dimensional array, size 26

....
 FOR V=0 TO 25
 DIFF(V)=NEW(V)-OLD(V) 'calculate differences
 NEXT V

NEXT is the closing statement of the FOR-NEXT loop and there's only one NEXT
allowed per loop. The following example is illegal:

Barix AG | 21/110

FOR i=1 TO 10
if ... THEN NEXT i ' ILLEGAL !!! - use GOTO instead
...

NEXT i

Note: V can be modified in the loop, which can be used for early loop
termination.

Note: The programmer is strongly discouraged from using GOTO to jump into
FOR..NEXT loops. Jumping out of the loops using GOTO is possible. Another way to
leave a FOR..NEXT loop is to set the loop variable to E2.

Nested FOR loops are allowed but correct order of FOR and NEXT must be kept:
FOR A=1 TO 10
FOR B=1 TO 10
...
NEXT A ' This is WRONG!
NEXT B

FOR A=1 TO 10
FOR B=1 TO 10
...
NEXT B ' This is CORRECT
NEXT A

 6.4 Subroutines
GOSUB L
...
L ...
....
RETURN [L1]

When a GOSUB is found the interpreter remembers the actual code position and
starts interpreting with the statement at line/label L.
When a RETURN command is found the execution is resumed at the first statement
after the calling GOSUB instruction. If optional parameter L1 is used the execution is
resumed at line L1. Only lines to which GOTO jump from the original return point
would be allowed can be used for L1.

WARNING: The use of the GOTO statement to jump into or out of a sub-routine is
prohibited!

To end a subroutine, the RETURN command must be used, otherwise the calling
stack of the interpreter is not cleared which may result in a stack overflow and a
program termination with an error message.

 6.5 Conditional statements
Condition evaluation and code branching are possible using the IF statement.
IF is followed by a boolean or integer expression:

If the logical expression is true or the integer result is non-zero the commands
following the THEN statement are executed. Two syntax forms of the IF statement
exist:

 6.5.1 Multiline IF
If the expression is true and THEN is the last statement on the line (excluding
comments), a multiline IF statement is assumed and all following lines up to the

Barix AG | 22/110

first unmatched ELSE or ENDIF statement are executed.
In that case the optional ELSE must be the last statement on the line as well and if
the expression result is false (zero), execution continues after either the first
unmatched ELSE statement or an ENDIF.

Code Example:
IF A < 500 THEN
 MSG$="A"
ELSE
 MSG$="there now"
ENDIF
SYSLOG MSG$

Note: In the current version of the BCL interpreter, due to the execution speed
it's recommended to use single-line IF where possible or GOTO/GOSUB instead of
long IF branches.

 6.5.2 Single line IF
In the case that the expression is true and THEN is followed by one or more
statements these statements are executed up to the first unmatched ELSE
statement or an end of the line (CR/LF). A CR/LF is implicitly treated as an ENDIF.

Code Example:
10 CNT=0
20 CNT=CNT+1
 IF CNT < 500 THEN GOTO 20 ELSE GOTO 10

If the expression result is false (zero), execution continues after either the first
unmatched ELSE statement or a CR/LF.

 6.5.3 Boolean expressions
Simple boolean expressions made of integer expressions have the following
syntax:
 E1 = E2, E1 > E2, E1 < E2, E1 >= E2, E1 <= E2, E1 <> E2

Simple comparison of strings is also possible:
S1$ = S2$, S1$<>S2$

Logical/boolean expressions (bE) in the BCL can have a value of logical constant
TRUE (-1) or FALSE (0). Complex logical expressions can be built using the
following logical functions:

NOT (bE)
logical NOT operation.

AND (bE [, bE2 [,.,.]])
logical AND operation.

OR(bE [, be2 [,...]])
logical OR operation.

XOR (bE [, be2 [,....]])
logical XOR operation.

Code Example:
IF AND(A>5,B<7) THEN SYSLOG "A is greater than 5 and B is less than
7"

Barix AG | 23/110

Note: AND(bE), OR(bE), XOR(bE) with one argument return the value of
expression bE.

 6.5.4 Multiple branching depending on an integer value
Multiple branching depending on an integer value is possible with the following
syntax:
ON E {GOSUB | GOTO } L1,[L2,[L3,....]]
If E equals 1, then GOSUB/GOTO to label L1 is executed.
If E equals 2 and L2 is given, then GOSUB/GOTO to the label L2 is executed.
If E equals 3 and L3 is given, then GOSUB/GOTO to the label L3 is executed.
etc.
If E is less than 1 or greater than the number of given labels, no action is taken.

Note: Since it is possible to use complex expressions as E, jumping can take
place for various values. For example, by shifting the value of integer variable V
by 499 we can use multiple branching to jump in the cases 500, 501, 502:
ON (V-499) GOTO 6010,6020,6030

 6.6 Time
System variable _DTS_ is inicialized during boot time and then incremented every
second. On devices supporting an RTC (realtime clock chip) _DTS_ is initialized to
the current time read from the RTC (number of seconds since 1/1/1970), on other
devices _DTS_ is inicialized to zero or set via NTP protocol.

DTS can be used when programming time dependent programs.

Any value can be assigned to _DTS_ using the following code sequence:
DTS =0
DELAY 0
DTS=value

If RTC is supported by the device, it's value is updated as well.

DELAY E
Delays the execution of the program for E milliseconds (maximum possible delay is
65535 ms).

Code example:
DELAY 500
SYSLOG "DONE"

waits half a second and then sends syslog message "DONE"

Note: DELAY is ignored in ON-call subroutine during the ON-call event handling.

 6.7 Eve nts
A program can have a limited event-driven structure using the ON..GOSUB
construct.

 6.7.1 Timers
Four independent software timers (resolution in milliseconds) can be used to
trigger the call of a subroutine. Timers must be set up using the TIMER statement

TIMER E0, E
Set the timer E0 to trigger every E milliseconds. The timer is reset with this
statement so it will be first triggered after E milliseconds.

Valid timers are 1, 2, 3, 4.

Barix AG | 24/110

Code example: TIMER 1,100
defines the timer to go off every 100 milliseconds
A parameter of 0 disables the timer.

The actual value of all timers (counting up from 0 to value set using the TIMER
statement) can be read from the special variable array variable _TMR_. Besides,
TMR(0) returns the number of milliseconds since the last hardware restart. Do
not write into _TMR_ variables.

Handling of time events is defined using the following statement:
ON TIMER{1|2|3|4} GOSUB L

When the ON ... GOSUB construct is interpreted, an event handler subroutine
(indicated with a label/line number L) is entered in a table. Then if the matching
event is triggered, the interpreter executes the registered subroutine.

This subroutine should return as soon as possible with a RETURN statement
because handling of other events is not possible until then. A label/statement
number of 0 disables this function.

 6.7.2 UDP event
Incoming UDP packet can be used to trigger the call of a subroutine.

Handling of incoming UDP blocks can be defined using following statement:
ON UDP GOSUB L

When the ON UDP GOSUB construct is interpreted, an event handler subroutine
(indicated with a label/line number L) is entered in a table. The interpreter then
executes the registered subroutine every time one or more UDP handles receive an
incoming block.

The handling subroutine has to check all receiving UDP handles for a pending
received block (LASTLEN returns negative value) and process all blocks before it
returns. Otherwise a block may be lost. It may also happen, that the handler
subroutine is called while all incoming blocks have already been processed.
In that case the handling subroutine should not perform any action.

This subroutine should return as soon as possible with a RETURN statement
because handling of other events is not possible until then. A label/statement
number of 0 disables this function.

For example see section 7.2, page 33.

 6.7.3 CGI event
Handling of CGI requests can be defined using the following statement:
ON CGI GOSUB L

When the ON CGI GOSUB L. construct is interpreted, an event handler subroutine
(indicated with a label/line number L) is entered in a table. The interpreter then
executes the registered subroutine in the case of CGI request.

This subroutine should return as soon as possible with a RETURN statement
because handling of other events is not possible until then. A label/statement
number of 0 disables this function.

See also section 12, page 74.

Barix AG | 25/110

 6.7.4 Handling I/O events
Digital and analog inputs can not be used to trigger events directly, they have to
be polled. Typically a subroutine is registered with the ON TIMERx GOSUB statement
and the input states are polled by this routine in a defined time interval
(depending on the timer used).

 6.7.5 Error Handling
Error handling routine can be set using:
ON ERROR GOSUB L
This command stores the line number/label of the error handling subroutine. In
case of a (recoverable) error the interpreter executes the subroutine at line/label L.
This allows the BCL programmer to catch certain runtime errors and handle them
appropriately.

If the given line number is 0, all errors will be handled by the BCL interpreter's
default error handler, usually terminating the program with an error message to
syslog.

The error code and the line number where the error has occurred are stored in
system variables _ERR_ and _ERL_ respectively.

Note: The error handler is not triggered by warnings.

 6.8 The LOCK command

The LOCK command is multipurpose. With only one parameter it locks (LOCK 1) or
unlocks (LOCK 0) the BCL interpreter into memory, which means that no task
switching will occur and the BCL interpreter will be the only application running
(i.e. web server, audio handling, etc. are stopped). This is useful only in very
specific, time critical situations.

LOCK 2 reboots the device
LOCK 3 reboots into the bootloader mode (this function is supported only by
certain BCL devices).

With LOCK x,y certain services can be disabled in runtime.

LOCK 0,x enables services masked with bit-mask x (see the table and examples
below)
LOCK 1,x disables services masked with bit-mask x (see the table and examples
below)

Bit index Service

0 snmp write

1 snmp read

2 modbus/tcp write

3 modbus/tcp read

4..7 reserved

8 rc.cgi

9 i/o dynamic tags

10 setup.cgi

11 setup dynamic tags

12 BAS.cgi

Barix AG | 26/110

Bit index Service

13 basic variable dynamic
tags

14 Basic.cgi

15 tftp

Examples:

Lock 1,32768

disables the TFTP upload function, all other functions are enabled.

Lock 0,&H0C00

enables the setup functions (cgi and dynamic tags), all other functions are
enabled.

Barix AG | 27/110

Barix AG | 28/110

User defined functions

User defined functions in BCL are implemented as subroutine (GOSUB-RETURN) calls
and the return value is stored in an integer variable of the same name as the
function. Functions are declared with the DIM statement:
DIM funct <GOSUB 1010>
...
1010
 ...
 funct=...
 RETURN

As an option functions can be called with a list of parameters enclosed within
parenthesis. When called the associated subroutine (at line 1010 in the above
example) is executed. The return value is assigned (by the subroutine) to the
associated integer variable and can be later used in any integer expression.

Code examples:
var=funct() ' execute function funct() and then assign
 ' the returned value to variable var

var=funct(5*3) ' execute function funct() with parameter 15 and
' then assign the returned value to variable var

var=funct ' assign the last returned value of funct() to var

All function parameters and local (temporary) variables are declared with the
LOCAL statement at the beginning of the associated subroutine. The LOCAL
statement must be the first statement of the subroutine and may not be used
anywhere else in the subroutine.

LOCAL {V|S$} [, {V2|S2$} [,....]]

The LOCAL statement has the same syntax as the DIM statement with the
exception that only simple integer variables (not arrays) or default size string
variables (without a size specification) may be declared. The function arguments
are listed first in the declaration followed by the local variables.

WARNING: The local variable names are unique within the program scope and
should not be used outside the subroutine. Value of a local variable is not defined
outside the subroutine.

Local variables count to the total number of variables.

When calling a function with N arguments the function arguments are stored into
the first N local variables declared with LOCAL, the remaining variables are
initialized to null values. If the LOCAL statement declares less than N variables,
only the first arguments are stored and the remaining arguments are discarded.
Any expressions can be passed to a function as arguments and the number of
arguments is not limited. The number of arguments can be retrieved from the
system variable _ARG.

Code example:
DIM circum <GOSUB 1010> 'function computing circumference

' given radius
....
c1=circum(3)

Barix AG | 29/110

....

....
1010
LOCAL radius
IF _ARG_<>1 THEN SYSLOG "Bad number of arguments for function
circum!"
circum = (2*314*radius)/100 'compute circumference
RETURN
....

Note: During a user defined function execution no events can be captured and
handled, therefore the user function subroutines should be kept short. If this is
not possible GOSUB-RETURN should be used instead of a function.

WARNING: The maximal nesting for recursive calculations is only 10. Therefore
use of recursive functions is not recommended.

Barix AG | 30/110

 7 I/O stream functions

 7.1 Function overview
The BCL language supports a variety of real world interfaces and protocols for
input and output. The same function set is used throughout but the functionality
differs slightly depending on the protocol.

 7.1.1 Open and close

Simplified procedure for an I/O stream operation consists of three phases:
1. Opening of the I/O stream using the OPEN function with the syntax: OPEN S$

AS H
where
● E$ is a string expression which determines the protocol and sets

appropriate parameters (for details see descriptions of individual
protocols below)

● H is the handle number (integer). For most protocols the numbers
0,..,15 are allowed. Handle numbers are common for all protocols and
the same handle cannot be opened for two different streams at the
same time.

● Whether open is blocking or non-blocking depends on the particular
protocol, see protocol specific sections below.

1. Using the stream with WRITE, READ, SEEK etc. (list of available functions
depends on particular protocol) Handle number of the stream is given to
functions to determine the stream. Multiple I/O commands can be used in
this phase before closing the stream.

2. Closing the stream using CLOSE H command, where H is the handle number.

After the CLOSE the handle is available again for use with any I/O stream.

Not all peripherals/protocols mentioned in this chapter are supported on all BCL
devices. Check the specific device documentation for more information about the
protocols supported.

Besides OPEN, the following commands are common for all I/O operations:

CLOSE H
Closes the file or stream with handle H.

 7.1.1 Write

WRITE H, E$, E0
Writes E0 bytes from E$ into the stream H.

If E0 = 0, writes complete string (length determined by terminating 0 in string,
text mode).

To write a binary zero, use an empty string S$ and E0 = 1.

Note: Unless explicitly set in the open statement (see non-blocking TCP below)
the write call is blocking and it does not return before the data is written to the
output (or the output buffer).

 7.1.2 Read

READ H, S$ [,E0 [,E$]]
Reads from the stream H into the string variable S$.

Barix AG | 31/110

The EOF condition can be checked using the LASTLEN(H) function (returns -1 on
EOF).

Without the optional parameters, files are read in "binary" mode. The read
command reads all currently available bytes up to the size of the destination
variable. The number of bytes read is returned by the LASTLEN(H) function, unless
there is a received UDP packet pending on the handle H.

 7.1.2.1 Line read

If the optional parameter E0 is 0, the file (flash or USB file) or TCP/serial stream is
read in "line" mode. every read returns either nothing or a complete text line of the
input with the end-of-line character(s) being stripped off.

The program must provide large enough buffer (S$ string), so that the longest
possible line of the input fits into the buffer. If a line longer than the string size
appears on the input, the READ function reads the first N-1 characters of the input
and returns, where N is the size of the provided S$

The supported end-of-line markers are CR only (modbus), LF only (Unix) and CRLF
(DOS).

Line read can be combined with binary read, however if line read is used, the only
allowed combination of CR+LF is as the EOL marker. The input must not contain
binary LF (ASCII 0x0A) after text CR (ASCII 0x0D).

If an empty line is on input, LASTLEN returns 0 and READ returns an empty string
in S$. If there's an incomplete line or no data on input, LASTLEN returns 0 and READ
does not read anything and does not change S$.

This can be easily used e.g. for parsing HTTP headers. See the below example:
10

s$="*"
READ 0,s$,0
IF LASTLEN(0)>0 THEN

SYSLOG s$ ' line read
ELSE

IF LEN(s$)=0 THEN SYSLOG "--- empty line ---"
ENDIF
GOTO 10

 7.1.2.2 Read timeout

For streams (COM, TCP) E0 can be positive integer timeout in milliseconds:
• If no new data on the stream, returns immediately
• As soon as whole S$ can be filled, fills it and returns.
• If time out, reads available data and returns.

This allows very simple implementations of block protocols which define the end of
message as a timeout time.

 7.1.2.3 Pattern search

The second optional parameter E$ defines a "match" string. With the E$ the READ
function skips all input data until an exact match with E$ is found and then starts
reading from the very first character after the matching string. This functionality is
ideally suited to reading data after a certain tag in XML or web data.

Barix AG | 32/110

If the E$ is given but not found, the function returns immediately and all
subsequent calls to LASTLEN(H) return 0, unless there is a received UDP packet
pending on the handle.

 7.1.3 Stream types

MEDIATYPE (H)
Returns the media type number if the stream H has been opened, or 0 if OPEN has
failed or the file or stream is already closed.

Value Media type

3 USB - reading

4 USB - writing

6 TCP

7 UDP

8 Serial port (COM)

9 Flash read

10 Flash write

11 Flash append

13 Setup

14 Wiegand protocol

17 Audio

18 USB - append

19 One wire bus

 7.1.4 Other functions

LASTLEN (H)
Returns the number of bytes transferred in the last read/write operation on the
stream H.

It is also used as an error code or EOF (End Of File) mark, in that case LASTLEN
returns -1.

For UDP reception negative return value means new data available for reading
(new packet has arrived). The absolute value gives the number of bytes available.

FILESIZE (H)
Returns the file size of file/stream HANDLE or returns the number of entries in a
USB directory.

For serial streams (COM, TCP) returns number of bytes available for reading in the
incoming FIFO.

For audio streams (AUD) returns the number of free bytes in the audio-decoding
buffer.

 7.2 The U DP network protocol
A UDP stream for both sending and receiving can be opened using:
OPEN "UDP:<IP address or DNS address>:<port number>" AS H

The given IP address should be 0.0.0.0 for a listening socket.

Barix AG | 33/110

The following example opens a listening UDP socket on port 1000:
OPEN "UDP:0.0.0.0:1000" AS 3

The IP address can be omitted:
OPEN "UDP::1000" AS 3

RMTPORT (H)
Returns the source port of the last UDP packed received from stream H or 0 if not
applicable.

RMTHOST$ (H)
Returns the source IP address (as a string) of the last UDP packed received from
the stream H, or an empty string.

WARNING: RMTPORT and RMTHOST$ functions have to be called before READ is
called (see below).

 7.2.1 Receiving UDP packets
When in receiving mode, the LASTLEN(H) may return both positive or negative
value. A negative return value indicates there is new data available for reading.
The absolute value is the number of bytes available for reading. After reading, the
return value of LASTLEN is positive (number of bytes read) unless new data have
arrived.

When reading UDP packets, LASTLEN, RMTHOST and RMTPORT$ should be used
before READ in order to determine packet size, like in the following example:

...
OPEN "UDP:0.0.0.0:1234" AS 1
OPEN "COM:..." AS 2
10
l=LASTLEN(1)
port=RMTPORT(1)
ip$=RMTHOST$(1)
IF l<0 THEN
 READ 1,buf$
 WRITE 2, buf$, -l
ENDIF
GOTO 10
...

The reason is that a new packet may arrive between READ and LASTLEN and the
information about data length could be lost. See following modification of previous
example:

...
READ 1, buf$
' at this moment, new packet can arrive
' in such case lastlen(1) will return negated size of the new
packet
' and the information about the size of the previous packet is lost!!
len = LASTLEN(1)
IF len>0 THEN WRITE 2, buf$, len
...

See also example 14.4, page 86.

 7.2.2 Sending UDP packets
The syntax of the WRITE command is extended for the UDP protocol:

Barix AG | 34/110

WRITE H, E$, E0, E2$, E1
Sends E0 bytes from E$ to the destination address E2$ (an IP address or a DNS
address) port E1.

Example:
OPEN "UDP:0.0.0.0:5555" as 4
WRITE 4,"hello",5,"192.168.2.255",5555
CLOSE 4

It is also possible to send a UDP packet to multiple addresses with one command
using a two dimensional integer array of size (number_of_addresses-1,1) filled with
pairs of IP addresses and port numbers.

OPEN "UDP:..." AS H
WRITE H,BUF$,LEN, ADR

DIM RECIP(2,1) 'two dimensional field of recipients

...
BUF$=...
LEN=...
RECIP(0,0)=RESOLVE("192.168.15.3")
RECIP(0,1)=200
RECIP(1,0)=RESOLVE("192.168.13.2")
RECIP(1,1)=300
RECIP(2,0)=RESOLVE("192.168.13.2")
RECIP(2,1)=400
OPEN "UDP:" AS 1
WRITE 1,BUF$,LEN, RECIP 'Sends data to 192.168.15.3 port 200,

'192.168.13.2 port 300, 192.168.13.2 port 400

If port equals 0 for some IP address, nothing is sent to this IP address, if IP address
equals 0, broadcast is sent.

 7.2.3 Multicast
Multicast IP addresses can be used for UDP reception as well as for UDP sending.
The device subscribes to a multicast group at the moment of calling UDP OPEN with
a multicast address (listener). De-registration happens upon calling CLOSE on the
handle. Up to 16 different multicast groups can be registered at the same time.

Note: Sending a UDP frame to a multicast address does not register to the group.
Subscription is not needed to send to a multicast group.

 7.3 The TCP network protocol

A TCP socket, both passive and active connections, can be opened using
OPEN "TCP:<IP adress or DNS address>:<port number>" AS H

Note that for TCP connections associated with the handle number 0 a large (4KiB)
receiving buffer is used. Otherwise only a 1024B receiving buffer is used.

 7.3.1 Listening socket
To open a listening socket, the IP address should be 0.0.0.0:
OPEN "TCP:0.0.0.0:<port number>" AS H

The OPEN function returns immediately in that case and after returning the socket
is ready and waiting for incoming connections.

Example:

Barix AG | 35/110

OPEN "TCP:0.0.0.0:1000" AS 3

opens listening TCP connection on port 1000 as handle 3

 7.3.2 Blocking TCP connection
If an active connection is open, the OPEN function is blocking and waits up to 10
seconds for the connection to be established. After it returns, the connection is
either established or closed (open failed), the state can (and should) be checked
by calling the CONNECTED function. In case of failure BCL does not specify the
cause of the error, it can be one of the following reasons:

● no ARP entry found
● DNS resolution failed
● connection timed out
● port blocked or closed.

If the OPEN fails and the connection has not been established, the file handle is
already closed and it is not necessary to call CLOSE.

Example:
OPEN "TCP:192.168.11.99:1000" AS 3

opens an active connection (session will be established) to IP address
192.168.11.99, port 1000, as handle 3.

 7.3.1 Non-blocking TCP connection
To open an active connection without blocking, use the following OPEN sequence:
OPEN "TCN:<IP address>:<port number>" AS H

OPEN returns immediately and it is up to the application to check the state of the
socket; the state can be checked by calling the CONNECTED function. After the
connection has been established, the socket can be used for reading and writing.

If the connection has not been established within a reasonable amount of time, it's
up to the application to handle the error condition; in that case the handle is still
open and CLOSE must be called to release it for further use.

Non-blocking open can be also called with a DNS address instead of an IP address,
in that case the OPEN function returns after the address has been resolved, which
may take significant time. Therefore to avoid this delay the usage of DNS
addresses with non-blocking TCP is not recommended; the RESOLVE function
should be used instead. Example:

DIM ip
ip=RESOLVE(“my.address.com”) ' resolve once at startup
...
OPEN SPRINTF$(“TCN:%lA:1000”,ip) as 3 ' use the resolved IP

' address in program core

 7.3.1.1 Non-blocking TCP write
WRITE H, E$, -E0
A negative length defines a non-blocking TCP write. In this case the WRITE
statement returns immediately, writing up to E0 bytes from E$ into the TCP socket
H. A consecutive LASTLEN call returns the number of bytes actually written to the
socket. For proper operation the application should check the length returned by
LASTLEN and handle potential retries.

 7.3.2 TCP close
CLOSE H [,E]

Barix AG | 36/110

TCP close can be called in two ways. If CLOSE is called without the optional
parameter E, the system waits until the partner acknowledges the close, which
may take up to 10 seconds. The execution of the program is blocked for that time.

In some situations a faster reaction time is required. The optional parameter E
defines the maximum time in milliseconds (non-negative integer), how long the
system waits for the other party to acknowledge the close. After this timeout, if no
acknowledge is received, the connection is dropped.

In the case, that E is zero, the system will wait for unlimited time.

RMTPORT (H)
Returns the remote port of the stream H, or 0 if not applicable.

For the special CGI handle -1 (see chapter 12.2) it returns the originating port of
the connection, which can be used e.g. for authentication.

RMTHOST$ (H)
Returns the remote host IP of the stream H, or an empty string.

For the special CGI handle -1 (see chapter 12.2) RMTHOST$ returns the remote
address of the client, which can be used e.g. for authentication.

CONNECTED (H)
Returns TRUE if the connection has been established for TCP-based stream H, or
FALSE otherwise.

FILESIZE (H)
Returns number of bytes in the incomming FIFO of the stream H available for
reading.

See also example 14.3 on page 85.

 7.4 Serial port

Serial ports can be opened using:
OPEN "COM:Baudrate,Parity,Data,Stopbits,FlowControl:PortNumber" AS X

where Baudrate, Parity, Data, Stopbits, FlowControl and PortNumber are
integer parameters.

Possible values for Baudrate are:
230400,115200,76800,57600 ,38400,19200,9600,4800,2400,1200,600,300

Possible values for Parity are:
N,O,E

Possible values for Data are:
7,8

Possible values for Stopbits are
1,2

Possible values for FlowControl are

Value Type of flow control

NON none

SFW Software flow control (XON,
XOFF)

Barix AG | 37/110

Value Type of flow control

HDW Hardware flow control
(RTS,CTS)

422 RS422

485 RS485

PortNumber is the number of the serial port, usually 1 or 2. Depending on the
hardware configuration, various ports are supported. Please refer to the specific
product documentation for details.

Serial configuration on the Barionet is ignored and the configuration is taken from
the system configuration. To open serial port on the Barionet use the following
OPEN command:
OPEN "COM::1" AS X

FILESIZE (H)
Returns number of bytes available for reading in the incoming FIFO.

See also example 14.6, page 86.

 7.5 SETUP
Non volatile parameters (e.g. configuration) are held in EEPROM. When the device
starts up these values are automatically copied from EEPROM and stored in RAM in
the Setup table. The Setup table can be accessed by opening a special file in the
following way:

OPEN "STP:<offset>" AS 3

where parameter offset specifies an offset (starting from 0) in the Setup table.

The BCL interpreter allows to read the Setup table in 256 byte blocks (starting from
the given offset). Configuration larger than 256 bytes can be read/written by
subsequent accessing 256 byte blocks. But only one such file can be opened at a
time. The read and write operations don't move the current position pointer. That
means subsequent reads or writes will always be from the same position where the
file was opened.

The read and write operations use strings for binary operations, so a full 256 bytes
is read from or written to the Setup table for each read or write operation.

READ H, S$
Reads 256 bytes from Setup handle H into S$.

WRITE H, S$, 256
Writes 256 bytes from S$ into Setup handle H.

If the WRITE call has been used on the file, the new modified Setup will be saved
into EEPROM upon CLOSE. Note that the complete Setup table is saved into
EEPROM not just the 256 byte block currently open.

Example for accessing a 512 byte Setup table using handle 3
DIM set$
OPEN "STP:0" AS 3
READ 3,set$
' perform modifications on set$
WRITE 3,set$,256
CLOSE 3
OPEN "STP:256" AS 3

Barix AG | 38/110

READ 3,set$
' perform modifications on set$
WRITE 3,set$,256
CLOSE 3

Some of the accessible data space is used by the OS and should not be altered,
some of the space is available for the BCL program to store parameters.

Details about the Setup layout are product specific, please refer to the product
manual for details.

 7.6 The USB filesystem (not supported on Barionet)

Files and directories on the local USB disk can be accessed . FAT12 and FAT16
filesystems with long filename extension are supported. Elements of directory
paths are separated with forward slashes (“/”). A full path starts with a slash.

 7.6.1 File access
To open a file, use the following OPEN command:

OPEN "C_R:usb://<filename>" AS H – open a file in read mode
OPEN "C_W:usb://<filename>" AS H – open a file in write mode
OPEN "C_A:usb://<filename>" AS H – open a file in append mode

Where filename is the full path name of the file to be accessed (starting with
slash).
Example:

OPEN "C_R:usb:///music/Rolling_Stones/song01.mp3" AS 1

If a file is open for writing and it does not exist, it is automatically created. Already
existing files are truncated to zero (C_W write mode) or newly written data are
appended to the end of the file (C_A append mode).

Once the file is open it can be read and written using READ and WRITE calls.
Besides them the following calls are available.

FILEPOS (H)
Returns the current file position for the file handle H (offset in bytes from
beginning of the file).

SEEK H, E
Sets the current file position of the file H to the position E (in bytes from the
beginning of the file).

FILESIZE (H)
Returns the size of the file H in bytes.

RENAME OLD$, NEW$
Renames the file OLD$ to NEW$. OLD$ is a full path including the device identifier
and possibly directory names. NEW$ is just a filename and must not contain any
device identifier or slashes. Therefore it cannot move the file into another
directory. The OLD$ and NEW$ names must be short ones in the 8.3 format.
Example:

RENAME "usb:///dir/readme.txt", "readme"

Renames the file readme.txt in directory dir to readme.

DELETE S$

Barix AG | 39/110

Deletes a file (not directory!) with the name S$ on the USB filesystem.
Example:

DELETE "usb:///dir/filename.ext"

Deletes the file filename.ext in directory dir.

WARNING: The file has to be closed before deleting.

See also a program example 14.1 on page 85 how to play a file.

 7.6.2 Directory access

Short filenames

Use the following command to read a directory:

OPEN "C_R:usb://<filename>" AS H – open a directory in read mode

Where filename is the full path name of the file to be accessed (starting with a
slash).

In the directory mode each READ call returns a descriptor of the next directory
entry in S$. The descriptor starts with the filename in 8.3 format followed by 16-bit
flag. The appropriate short name is returned for files with long names. The first
two entries returned are “.” for the current directory and “..” for the parent
directory.

The directory entry flags can be obtained with the following MIDGET command:

flag=MIDGET(S$,14,2)

The value of flag is 1 for files and 2 for directories.

If the directory listing is already at the end, LASTLEN returns -1 (EOF condition).

The SEEK call sets the current directory pointer to point to the given entry (starting
from 0).
E.g. SEEK H,0 rewinds the directory read.

The FILEPOS function returns the current position of the directory pointer.

The FILESIZE function returns the number of directory entries including the “.”
and “..”

A directory listing example:
DIM dir$
DIM _Mb$(20)
DIM fl

dir$="/music"
OPEN "C_R:usb://"+dir$ AS 1
SYSLOG "Directory listing of "+dir$

100
READ 1,_Mb$
IF LASTLEN(1)=-1 THEN GOTO 200
fl=MIDGET(_Mb$,14,2)
IF fl=1 THEN type$="file" ELSE type$="directory"
SYSLOG _Mb$+" "+type$
GOTO 100

200
CLOSE 1

Barix AG | 40/110

END

Long filenames, extended listing

If a larger buffer of at least 298 bytes (i.e. 299 bytes with terminating zero) is
provided, the directory read function returns for each directory entry a complete
information including the long filename.

The structure is described in the following table (for Midget add 1 to the offset):

Offset Size Name Description

0 13 Short name Short filename in form 8.3 plus terminating
zero

13 2 Flags 1 = file
2 = directory

15 1 Attributes Copy of FAT16 attributes:
bitwise: 00ARSHDV

16 2 Extended attributes Copy of VFAT extended attributes

18 4 Creation time 1 byte hour
1 byte minute
1 byte second
1 byte centiseconds (10ms unit)

22 4 Creation date 1 byte day (1-31)
1 byte month (1-12)
1 byte year since 1980 (0=1980)
1 byte reserved

26 4 Last access date 1 byte day (1-31)
1 byte month (1-12)
1 byte year since 1980 (0=1980)
1 byte reserved

30 4 Last modification
time

1 byte hour
1 byte minute
1 byte second
1 byte centiseconds (10ms unit)

34 4 Last modification
date

1 byte day (1-31)
1 byte month (1-12)
1 byte year since 1980 (0=1980)
1 byte reserved

38 4 File size File size in bytes (32-bit unsigned integer)

42 256 Long file name 255 characters + terminating zero

 7.7 The local flash filesystem

 7.7.1 Reading files

Files in FLASH memory of the device (stored in .cob files) can be read using the
following OPEN command:

OPEN "F_R:<filename>" AS H

Example:
open file "testfile.txt" for reading with handle 1
OPEN "F_R:testfile.txt" AS 1

Except the READ command, the following commands are available:

Barix AG | 41/110

FILEPOS (H)
Returns the current file position for the FFS file H.

SEEK H, E
Sets the current file position of the FFS file H to the position E (in bytes from the
beginning of the file).

FILESIZE (H)
Returns the size of flash file H in bytes.

 7.7.2 Writing files (Barionet only)

In addition to the read FLASH-file access the Barionet offers a write support with
the following limitations. The file has to exist in a .cob file in FLASH memory of the
Barionet and start with a special header “<*>CRLF” (ASCII: 60, 42, 62, 13,10). The
size of the file is fixed and can not be changed. Only text data can be stored in the
file since the NULL character (\0) is recognized as an end-of-file mark.

The file header and the EOF mark are transparent for READ operations as well as
for the built in webserver. This way the HTML/DHTML pages can be modified on the
fly or e.g. system logs be written.

OPEN "F_W:<filename>" AS H – opens file in write mode
OPEN "F_A:<filename>" AS H – opens file in append mode

In write mode the file size is truncated to zero (EOF marker is moved to the start of
the file) and the file position pointer is set to the beginning of the file. In append
mode the original content of the file is preserved and the file position pointer is set
to the end of the file.

Each WRITE call moves the EOF mark appropriately, but maximum number of
bytes of the original file size can be written (the file can not be enlarged within the
.cob file).

The FILEPOS, SEEK and FILESIZE functions can be used to seek within the file and
to obtain the current file size.

 7.8 Keyboard and display interface (audio devices only)
On hardware featuring a keyboard and/or a text display, these can be accessed
through the file interface as well. For that purpose a special handle -2 is defined.
This handle is always open and can not be closed. The following IO functions are
supported on handle -2.

 7.8.1 Display

FILESIZE (-2)
Returns the size of the display as a 16-bit word: 256* height + width. Height
defines the number of lines of the display whereas width the number of characters
per line.
If the hardware does not feature a display FILESIZE returns 0.

WRITE -2, S$, E
Writes E bytes from S$ to handle the display. If E is 0 then the whole string up to
the null-terminator is written.

S$ can contain both text and control characters. Text is written from the current
cursor position up to the end of the line. Characters with codes 32 to 127 are
supported, US ASCII encoding is used.

Barix AG | 42/110

Standard ANSI escape sequences are used to control the display. Each control
sequence starts with the “escape” character (ASCII code 27, hexadecimal 0x1B)
followed by the '[' character (left square bracket, ASCII code 91, hexadecimal
0x5B). The following sequences are supported.

ESC [2 J Display Clear

clears the display and moves cursor to the upper
left corner of the display (position 0,0)

ESC [Pn A Cursor Up

Moves cursor up by the given specified of lines. If
the cursor is already at the top line ignores this
sequence.

ESC [Pn B Cursor Down

Moves cursor down by the given specified of lines.
If the cursor is already at the bottom line ignores
this sequence.

ESC [Pn C Cursor Forward

Moves cursor right by the given specified of lines.
If the cursor is already in the rightmost column
ignores this sequence.

ESC [Pn D Cursor Backward

Moves cursor left by the given specified of lines.
If the cursor is already in the leftmost column
ignores this sequence.

ESC [PL ; Pc H Cursor Postition

Moves the cursor to the specified position
(coordinates). If the position is not specified
moves the cursor to the upper left corner. If the
coordinates are out of the screen they are clipped
to the display size.

ESC [PL ; Pc f Same as the previous sequence.

The following abbreviations are used:

Pn – stands for a decimal number

PL – stands for a line number, line 0 is the topmost line

Pc – stands for a column number, 0 is the leftmost column

In addition the character with ASCII code 10 (line feed) is used as the end-of-line
terminator (moves cursor to the beginning of the next line). If already at the last
line of the display the sequence is ignored.

Note: to include ESC in a string use the \x1b sequence

WRITE -2, "\x1b[2J",0 ' clear display
WRITE -2, "\x1b[0;"+str$((FILESIZE(-2)/2)-6)+"H",0 ' cursor pos
WRITE -2, "Hello World",0

The above example clears the screen and writes “Hello World” in the middle of the
first line.

Barix AG | 43/110

 7.8.2 Keyboard
The built-in keyboard driver captures key events (key presses and key releases)
and stores them in an internal event queue. If the queue is full new key events are
lost.

Each key event is represented as a 16-bit word containing the 7-bit key number 0
to 127 and the pressed/released information in the bit 7. If the key is pressed the
bit 7 is set, if the key is released the bit 7 is zero. The bits 8 to 15 contain the event
source.

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Event souce Press
ed

Key number

Key mapping as well as the event source numbering are hardware dependent, see
the respective hardware documentation.

Each key press and key release generates an event, e.g. if a key number 10 is
pressed and released two events are generated, the first event with number 138
and the second event with number 10.

The key-event queue is accessible to the application via the file handle -2
interface using the following calls:

LASTLEN (-2)
Returns the number of key-events in the queue.

READ -2, S$, E
Removes the topmost key-event from the queue and returns it in S$. If E is non-
zero and the queue is empty blocks until the next event arrives (wait for a key-
press or key-release). Otherwise returns immediately.

 7.8.3 IR interface (audio devices only)
An external infrared remote-control receiver attached to the first serial port can be
read via the special handle -3. This handle is always present, no need to call open
or close.

The commands sent by the remote-control are decoded on a high level and, the
format is autodetected. See the Exstreamer Technical Documentation for more
detailed description of the format.

If a file remote.ini is present in the device's FLASH memory, the received
commands are automatically searched in this file and the appropriate line-number
(counting from 1) is returned as well. The structure of the file is the same as for the
Exstreamer (a text file with one command per line, the lines start with the
command code; see the Exstreamer Technical Documentation for more details). If
the received code is not found in the remote.ini the returned line number is 0.

A repetitive command is signalised with a star ('*'), the line number is zero in that
case.

READ -3, S$
Returns a formatted string: <3-digit line number>,<decoded command>
E.g.
024,NE: 00FED02F
006,NE: 00FE6897

If no command has been received or the infrared receiver is not available returns
an empty string (without blocking).

Barix AG | 44/110

 7.9 The Wiegand reader (Barionet 100 only)

It is possible to access up to two connected Wiegand readers with the RDR filetype:

OPEN "RDR:" AS H

The Wiegand interface is read-only. The READ command reads raw bit output of the
Wiegand reader and returns the data in the following format:

B0 B1 B2 B3 B4 ...

b7 b6..b0 b7...b0 b7...b0 b7...b0 b7...b0 ...

ad
r

len Data

b0...b7

Data

b8...b15

 Data

b16...b23

Data

 b24...b3
1

...

The byte 0 contains address adr of the reader in the highest bit (0-first reader, 1-
second reader) and length len in bits of the raw data returned by the reader (the
lower 7 bits) .

Byte 1 and following contain the raw bit output of the reader in the big-endian
format (see the above figure). Bit 0 of the raw output is in bit 7 of the first data
byte and bit 7 of the raw output is stored in bit 0 of the first data byte.

The READ call is non-blocking and returns either the complete data from the reader
or no data if there is no input. The LASTLEN function returns 0 in the latter case.
It's recommended to use similar command sequence as in the following example:

DIM rdr$(10) ' for 26-bit Wiegand
DIM bits
...
OPEN "RDR:" AS 1
...

10 ' the main loop
READ 1, rdr$
IF LASTLEN(1)=0 THEN GOTO 10 ' no input, wait for data
bits=AND(127, MIDGET(rdr$,1,1)) ' Wiegand type
IF AND(128,MIDGET(rdr$,1,1)) THEN

' the second reader
ELSE

' the first reader
ENDIF
' process the data
GOTO 10 ' jump to the main loop

 7.9.1 26-bit Wiegand reader

For example if a 26-bit Wiegand reader is connected, the first byte of the data
returned by the READ call will be 0x1A for the first reader (26 plus the top most bit
not set) and 0x9A for the the second reader (26 plus the top most bit set).

The 26-bit Wiegand reader sends first the parity bit for the first 12 bits, followed by
the second 12 bits and a parity bit for the latter 12 bits.

Barix AG | 45/110

B1 B2 B3 B4

b7 b6..b0 b7...b
3

b2...b
0

b7...b0 b
7

b6

pa
rit
y

12 bits 12 bits par
ity

An example how to read a 26-bit Wiegand reader:

DIM b1,b2,b3,id
DIM rdr$(10) ' for 26-bit Wiegand

OPEN "RDR:" AS 1
10

READ 1, rdr$
IF LASTLEN(1)=0 THEN GOTO 10 ' no input, wait for data
bits=AND(127, MIDGET(rdr$,1,1)) ' Wiegand type
if bits<>26 THEN

SYSLOG "Unsupported card, "+STR$(bits)+"bits"
GOTO 10

ENDIF

b1=AND(255,SHL(MIDGET(rdr$,2,1),1))+SHR(MIDGET(rdr$,3,1),7)
b2=AND(255,SHL(MIDGET(rdr$,3,1),1))+SHR(MIDGET(rdr$,4,1),7)
b3=AND(255,SHL(MIDGET(rdr$,4,1),1))+SHR(MIDGET(rdr$,5,1),7)
id=b1*65536+b2*256+b3 ' store 24bit wiegand ID

IF AND(128,MIDGET(rdr$,1,1)) THEN
SYSLOG "Second reader: ID="+STR$(id)

ELSE
SYSLOG "First reader: ID="+STR$(id)

ENDIF
GOTO 10 ' jump to the main loop

See also the example program 14.7 on page 88.

 7.10 1-wire interface (Barionet 50 only)
An interface to the 1-wire bus on Barionet 50 allows to access any connected 1-
wire device from the BCL, besides temperature sensors and real-time clock, which
are handled by the firmware.

 7.10.1 Device addresses
Every 1-wire device has a unique 64-bit address assigned in the factory. At
Barionet startup the bus is scanned for all connected devices and their addresses
are stored in a table in memory.

This table is mapped to the IO space from offset 1001 to 1200 and is accessible
from the BCL application via IOSTATE commands as follows:

1001 – address of the first 1-wire device: low 32-bits
1002 – address of the first 1-wire device: high 32-bits
1003 – address of the second 1-wire device: low 32-bits
1004 – address of the second 1-wire device: high 32-bits
…

Device addresses are stored in little-endian format. Unused entries in the table
have value 0.

Example:
To read the address of the fifth device use:

Barix AG | 46/110

low=IOSTATE(1009)
high=IOSTATE(1010)

A temperature sensor with address 10-51-8B-FF-00-08-00-C4 will read as:
low=0xFF8B5110
high=0xC4000800

 7.10.2 File interface
The 1-wire bus is accessed by sending transactions through a file-like interface.
Transactions are queued and atomically executed by the 1-wire bus scheduler in
the firmware. This way transactions from the BCL application and from the
firmware (temperature sensors and real-time clock) can be multiplexed.

A transaction is a complete access to one or more devices on the bus, which
cannot be interrupted by any other request. For instance a transaction to measure
temperature is the following sequence of commands:

• bus reset
• select a device by address (MATCH ROM)
• start temperature measurement (CONVERT TEMPERATURE command)
• apply power for 1 second
• bus reset
• select a device by address (MATCH ROM)
• read the measured value (READ SCRATCHPAD)
• bus reset

OPEN "OWR:" as H
Open the 1-wire bus interface.

WRITE H , S$
Send a 1-wire transaction S$ to the bus. Returns immediately. LASTLEN returns >0
on success or 0 if the 1-wire interface is busy. On success transaction is queued
and executed asynchronously.

Only one transaction can be submitted at a time.

FILESIZE (H)
Is used to test whether the last 1-wire transaction has been processed (returns
value >=0) or still in processing (returns <0).

READ H, S$
Reads the response to the last 1-wire transaction. LASTLEN returns the number of
bytes read (>=0).

LASTLEN (H)
Returns the length of the last 1-wire response when called after READ, or error
status of a WRITE command.

 7.10.3 Bus transactions
A 1-wire transaction is a binary string consisting of one or several commands. Each
command has zero or more parameters. Commands are not separated from each
other by any special character, neither are commands separated from their
parameters. A command sequence is terminated by binary zero.

Example:
<cmd 1><par1><par2><cmd2><command 3><parameter 1><zero>

16-bit parameters are stored in little-endian (low byte first) format.

Barix AG | 47/110

Comman
d

(ASCII,
hex)

Name Parameters Description

'X' (0x58) Bus reset None Issue bus reset

'?' (0x3F) Enumeratio
n

None Rescan the bus for new devices. Please
note that this command may change
the order the devices appear in the
address table, if devices were attached
or removed.

'T' (0x54) Transmit 1-byte length
length bytes
data

Send length bytes of data to the bus.
Data follow after the length
parameter.

'R' (0x52) Receive 1-byte length Receives length bytes of data from the
bus and append to the receiving buffer.

'A' (0x41) Address 2-byte index Send 64-bit address of the index-th
device to the bus. Index counts from 0
and is an index to the device address
table. E.g. index=1 is the device, whose
address can be read with IOCTL(1002)
and IOCTL(1003).

'F' (0x46) Address
family

2-byte index
zero terminated
list of 1-byte
family codes

Similar to the 'A' command. Sends 64-
bit address of the index-th device from
the listed device families. Family code
is the first byte of device's address. The
device is searched as by the 'A'
command, but devices, which do not
match any of the listed family codes
are ignored (skipped).
E.g. if there are devices with family
codes 0x10, 0x28, 0x10, 0x10, 0x22,
0x28 in the table, the 'F' command
issued with index=2 and family
codes=0x22,0x28 sends the address of
the last device.

'D' (0x44) Delay μs 2-byte delay Waits delay microseconds. This
command is useful when waiting for the
1-wire device to finish an operation
(e.g. temperature measurement).

'M'
(0x4D)

Delay ms 2-byte delay Waits delay milliseconds. This
command is useful when waiting for the
1-wire device to finish an operation
(e.g. temperature measurement).

'H' (0x48) High power None Apply high power to the bus. This might
be necessary for bus powered devices
to perform certain operations (e.g.
during temperature measurement).
Please note that during high-power it is
not possible to communicate on the
bus. Therefore high power must be
removed using the 'L' command,
typically after certain time ('M' or 'D'
commands).

Barix AG | 48/110

Comman
d

(ASCII,
hex)

Name Parameters Description

'L' (0x4C) Low power None Remove high power from the bus (apply
low power). Low power is the default
bus state and allows data
communication.
This command is used in combination
with the 'H' command.

Important:
A 1-wire transaction is a binary string and special attention must be taken when
creating or manipulating it. Use MIDSET or MIDCPY to create a transaction.
For simplicity you can also create a transaction by assigning a text string into a
variable, use the \x escape sequence to insert non-zero binary characters and
use a padding character (e.g. dot or minus) where binary zero will be in the
sequence. Then replace the padding characters with binary zero using MIDSET.
See the following example.

 7.10.4 Example

The following example reads the first DS18B20 temperature sensor and prints the
current temperature to syslog.

DIM response$(10)
DIM req$(50)

req$="X" ' bus reset
req$=req$+"T\x01\x55" ' send "MATCH ROM" command
req$=req$+"F--\x28-" ' send address of the N-th sensor

' from family 0x28(DS18B20)
req$=req$+"T\x01\x44" ' send "CONVERT TEMPERATURE" command
req$=req$+"H" ' apply strong power on the bus
req$=req$+"M\xe8\x03" ' wait 1000ms (0x3e8)
req$=req$+"L" ' stop strong power
req$=req$+"X" ' bus reset
req$=req$+"T\x01\x55" ' send "MATCH ROM" command
req$=req$+"F--\x28-" ' send address of the N-th sensor

' from family 0x28(DS18B20)
req$=req$+"T\x01\xbe" ' send "READ SCRATCHPAD" command
req$=req$+"R\x09" ' read 9 bytes
req$=req$+"X" ' bus reset to clean up
MIDSET req$,6,2,0 ' set family index for the first

' address command
MIDSET req$,9,1,0 ' terminate the first family command
MIDSET req$,23,2,0 ' set family index for the second

' address command
MIDSET req$,26,1,0 ' terminate the second family command

OPEN "OWR:" as 1 ' open 1-wire handle
2

WRITE 1,req$ ' send request
1

' wait until the request is processed
IF FILESIZE(1)<0 THEN GOTO 1
READ 1,response$ ' read the response
IF LASTLEN(1)=9 THEN ' received 9 bytes of data -> success

temp=MIDGET(response$,1,2) ' raw temperature
temp=temp*100/16 ' convert from the default

' resolution 1/16 deg C

Barix AG | 49/110

SYSLOG "the temperature is "+SPRINTF$("%0.2F",temp)+" C"
ENDIF

GOTO 2
' this part of the code is never executed
CLOSE 1
END

Barix AG | 50/110

 8 Audio interface (audio devices only)

BCL provides a high-level interface for decoding and encoding1 audio in variety of
audio formats. The audio interface is accessed through a file handle using the
OPEN, READ, WRITE, CLOSE, LASTLEN and FILESIZE calls. The audio mode, the
quality and the data format are specified within the string passed to the OPEN call.

Generally, the following audio formats are supported in encoding, decoding, RTP
and raw format: MP3, PCM, µ-Law and A-Law (G711). See the product specific
documentation which formats are supported by your hardware.

 8.1 Opening audio
Audio input/output can be opened with the following syntax
OPEN "AUD:MODE,FLAGS,QUALITY,DELAY,FRAME_DURATION,SSRC" as H

 8.1.1 The MODE parameter – audio format

MODE
value

mode

1 MP3 decoding (MPEG 1, 2 and 2.5, layer III decoding)

2 MP3 encoding (MPEG 1 and 2, layer III encoding)

11 Uncompressed audio (PCM, G711 and G722 encoding
and/or decoding)

13 MP3 encoding with bit rate (MPEG 1, MPEG 2 and
MPEG 2.5, layer III encoding)

Configuration of parameters (e.g. sampling rate, number of channels, format, etc.)
of each of the above audio modes are defined by the QUALITY field, see below.

NOTE: Please note that the audio modes supported depend on the hardware
device.

 8.1.2 The FLAGS parameter – open options

1 Not available on Exstreamer devices.

Barix AG | 51/110

FLAGS bit value/meaning

0 0 read/write raw data

1 read/write RTP frames

1 0 start playback immediately

1 delayed playback

not used in encoding and in RTP

2 0 delay in milliseconds

valid only if delayed playback is set

1 delay in bytes

valid only if delayed playback is set

3 reserved, always 0

4 0 no rebuffering

1 automatic rebuffering on buffer
underrun (MP3 decoding only; ignored

in RTP)

5 0 PCM data in big-endian format (Msb
first)

1 PCM data in little-endian format (Lsb
first)

7 Valid only in RTP mode. Allows to use the RTP
buffering algorithm with raw UDP. If set, then
raw UDP (frames without the RTP header) are

expected on the input.

 8.1.3 The QUALITY parameter – sampling rate, etc.

 8.1.3.1 MP3 decoding

For MP3 decoding the QUALITY parameter is ignored.

 8.1.3.2 MP3 encoding

The values for MP3 encoding are documented in the following table:

Bit Meaning

0..3 Interpreted as a 4-bit integer

0 MPEG2/22.05kHz

1 MPEG1/44.1kHz
(MP3)

2 MPEG2/24kHz

3 MPEG1/48kHz
(MP3)

4 MPEG2/16kHz

5 MPEG1/32kHz
(MP3)

4..7 encoding quality 0 to 7 (0 lowest, 7 highest)

8 1= disable CRC, 0= enable CRC

Barix AG | 52/110

Bit Meaning

9 MS-Stereo enc 1=disable , 0=enable

10 bitreservoir1 1=kept empty, 0=used

11 0=stereo, 1=mono encoding

12..13 Emphasis 0=none, 1=50/15us, 3=CCITT J.17

14 0=stream is copy, 1=stream is original

15 stream is copyright protected 0=yes, 1=no

 8.1.3.3 MP3 encoding with bitrate

MP3 encoding with bitrate allows to encode MP3 in VBR, CBR or ABR mode with a
configured bitrate rather than quality as above. The following table describes
configuration bits of the QUALITY parameter.

Bit Meaning

0..3 Interpreted as a 4-bit integer

0 MPEG2/22.05kHz

1 MPEG1/44.1kHz
(MP3)

2 MPEG2/24kHz

3 MPEG1/48kHz
(MP3)

4 MPEG2/16kHz

5 MPEG1/32kHz
(MP3)

4..9 Bit rate in kbps/8

10 bitreservoir2 1=kept empty, 0=used

11 0=stereo, 1=mono encoding

12..13 Bit rate mode:
0=reserved, 1=VBR, 2=ABR, 3=CBR

14..15 reserved

NOTE: Please note that MP3 encoding with bitrate is available only on VS1063
codec based hardware (IPAM 102, IPAM 302).

 8.1.3.4 Uncompressed modes

In Uncompressed mode encoder and decoder can run independently up to the
sampling rate of 32kHz. At higher sampling rates (44.1kHz and 48kHz) only uni-
directional audio is supported. The encoder and the decoder use the same
settings of the audio format, number of channels and sampling rate.
The configuration is listed in the following table:

1 In RTP encoding make sure that bitreservoir is kept empty otherwise audio glitches may appear on
frame loss.

2 In RTP encoding make sure that bitreservoir is kept empty otherwise audio glitches may appear on
frame loss.

Barix AG | 53/110

Bit Meaning

0..7 Sampling rate in kHz:

8 8000 Hz

11 11025 Hz

12 12000 Hz

16 16000 Hz

22 22050 Hz

24 24000 Hz

32 32000 Hz

44 44100 Hz

48 48000Hz

8..9 Audio format:
0 µ-Law

1 A-Law

2 PCM

3 G.722

10 Enable encoder: 1= enable, 0= disable

11 Enable decoder: 1= enable, 0= disable

12 Stereo: 0= mono, 1=stereo

13 Acoustic Echo Cancellation: 1= enable,
0= disable

AEC available only in full-duplex mode
(both encoder and decoder active) and
on hardware that supports AEC.

14..1
5

Reserved, set to 0

 8.1.4 The DELAY parameter – delayed playback
In raw decoding-only mode, the start of decoding can be delayed if the delay bit is
set in FLAGS. The DELAY parameter contains the delay in bytes or milliseconds,
depending on the flags used.

This feature is not available in raw full-duplex mode.

In RTP mode (decoding-only and full-duplex) DELAY is used to set the initial buffer
level, regardless of the FLAGS value. Read more in section 8.2.3 on page 55.

 8.1.5 RTP encoder parameters FRAME_DURATION and SSRC
The last two parameters are valid only for RTP encoder. In other cases they can be
omitted (the open string ends with the DELAY parameter). Read more in section
8.2.3.2 on page 56 and section 8.2.3.3 on page 56.

 8.2 Data formats

 8.2.1 PCM audio data
By default, 16-bit PCM data (Uncompressed mode) are expected to be in the big-
endian (Motorola, Msb first) format. To swap the endianity to the little-endian

Barix AG | 54/110

(Intel, Lsb first) format, set the bit 5 of the FLAGS parameter passed to the OPEN
function.

Encoding (reading from the audio device) and decoding (writing into the audio
device) always use the same endianity. It's not possible to encode in big-endian
and decode in little-endian and vice versa. If this is required, an extra processing
must be performed by the application.

Note: The endianity bit also affects the RTP payload type accepted/generated by
the audio interface. By default all PCM RTP payload types are big-endian. With
the FLAGS bit 5 set, a different set of payload types is accepted/generated in
PCM modes. See section 8.2.3 below for more details.

 8.2.2 Raw data mode
Format of the data read or written from the audio interface depends on the audio
mode and flags. In raw mode data are transferred to or from the codec as they are
and the application must care about the buffer handling and correct data
formatting (e.g. avoid sending broken MP3 frames to the codec).

READ H, S$ [,E]
When reading from the audio interface (audio encoding) an optional size
parameter E can be specified. Then the READ function returns either E bytes, or 0
if there's not enough data available. This can be used for constant bitrate data
stream of uncompressed audio.

If E is not specified, the READ function reads all available data, up to the size of S$.

FILESIZE (H)
Returns the number of free bytes (free space for writing) in the audio-decoding
buffer.

See also example 14.1 on page 85 and example 14.2 on page 85.

 8.2.3 RTP data mode
In RTP mode the decoder automatically manages the decoding buffer using the
additional information provided within the stream. The decoder performs the
following:

● Corrects the network jitter and recovers lost frames
● Corrects long term clock drift between the source and the decoder
● Manages constant decoding delay within one frame and this way allows

synchronisation of multiple devices
● Synchronises to one stream using SSRC, sequence numbers and time

stamps in the RTP header
● In case the audio buffer reaches zero level (no data from the source) or if

the time stamp sequence suddenly significantly changes (e.g. the source
resets) the decoder automatically restarts and re-synchronises to the new
packet sequence.

 8.2.3.1 Initial delay

The RTP decoder keeps a constant delay with an accuracy of one RTP frame (the
frame size depends on the audio source and format used). The initial delay in
milliseconds is specified by the DELAY parameter upon OPEN. The delay bits (bits 1
and 2) in the FLAGS parameter are ignored.

For correct operation, the initial delay must be set to at least the codec internal
buffer size plus the time of the network jitter and possible lost frames. The
following table lists the sizes of the codec internal buffers:

Barix AG | 55/110

Codec Mode Buffer
size

[bytes]

Micronas MP3 1780

Micronas PCM 320

VLSI (non AAC+) MP3 2048

VLSI (non AAC+) PCM 2048

VLSI (AAC+) MP3 2048

VLSI (AAC+) PCM 2048

 8.2.3.2 Frame duration

The encoder automatically builds RTP header for every outgoing frame.

In MP3 mode every RTP packet carries one MP3 frame. The frame duration is given
by the duration of the MPEG frame and depends on the MPEG format and sampling
frequency used.

In PCM mode the frame duration is configurable by the optional FRAME_DURATION
parameter to audio open. Select the frame duration in samples. To convert a value
in milliseconds to samples use the following formula:

Where samplerate is the sampling rate in Hertz.

By default, if not specified or set to 0, the frame duration of 20 milliseconds is
used.

The frame duration is limited by the maximum UDP packet size of 1300 bytes. If
FRAME_DURATION is set to a value, which exceeds the maximum packet size, it is
automatically clipped to the maximum size.

The maximum payload size in bytes for the encoder can be calculated from the
following formula:

min1300 , 20⋅chans⋅Bps⋅samplerate1000 

Where chans is the number of channels, Bps is the number of bytes per sample
and samplerate is the sampling rate in Hertz.

The maximum payload size for MP3 is 1400 bytes.

 8.2.3.3 SSRC

An RTP stream is identified at the source (encoder) by a 32-bit SSRC identifier,
which is transferred in every RTP frame. This helps to identify multiple streams
coming from the same IP address. The SSRC field is configurable by the optional
SSRC parameter at open.

READ H, S$
In RTP mode the audio interface provides complete RTP frames to the application
including correct time stamp and sequence number. The READ function returns
either one complete RTP frame or no data (LASTLEN returns 0). The application
then just sends the data to the network without any further processing.

The same mechanism is used in writing, the BCL application reads an RTP frame
from a UDP socket and writes it as it is to the audio interface. No additional
processing is needed. The audio interface automatically handles buffer overruns
and underruns, duplicates the data if necessary etc.

Barix AG | 56/110

milliseconds⋅samplerate
1000

This significantly reduces the complexity of the application and increases the
processing speed.

The audio interface can be open for one RTP stream at a time. If more
complex application receiving multiple RTP streams (e.g. with a different payload
type or on a different port) is required, non-relevant frames must be filtered
out by the application.

In RTP mode the WRITE function ignores frames with payload type not matching
the audio type passed to the OPEN function. E.g. if audio was open to receive MP3,
only payload type 14 (MPA) will be accepted and all other payload types (e.g. 4 for
PCMA) will be ignored. LASTLEN returns a negative value in that case to signalize
an error condition.

See also examples 14.4 and 14.5 on page 86.

 8.2.1 RTP payload types
The following table shows the defined RTP payload types and the according audio
mode, quality and flags to be used with the OPEN function.

When writing to the audio interface (decoding audio) only the payload type
associated with the particular mode is accepted, RTP frames with a different
payload type are ignored.

Barix AG | 57/110

RTP payload
type

Audio Format Mode Qualit
y

(*)

Flags

0 μ-Law, 8bit, mono, 8kHz 11 0x000
8

-

8 A-Law, 8bit, mono, 8kHz 11 0x010
8

-

9 G.722, mono, 16kHz 11 0x031
0

10 PCM 16bit, MSB first, signed,
44.1kHz stereo, left channel first

11 0x122
C

bit5=
0

11 PCM 16bit, MSB first, signed,
44.1kHz mono

11 0x022
C

bit5=
0

14 MPEG audio 1,2 - -

96 PCM, 16bit, MSB first, signed,
8kHz mono

11 0x020
8

bit5=
0

97 μ-Law, 8bit, mono, 24kHz 11 0x001
8

-

98 A-Law, 8bit, mono, 24kHz 11 0x011
8

-

99 PCM, 16bit, MSB first, signed,
24kHz mono

11 0x021
8

bit5=
0

100 μ-Law, 8bit, mono, 32kHz 11 0x002
0

-

101 A-Law, 8bit, mono, 32kHz 11 0x012
0

-

102 PCM, 16bit, MSB first, signed,
32kHz mono

11 0x022
0

bit5=
0

103 PCM 16bit, MSB first, signed,
48kHz stereo, left channel first

11 0x123
0

bit5=
0

104 PCM, 16bit, LSB first, signed,
8kHz mono

11 0x020
8

bit5=
1

105 PCM, 16bit, LSB first, signed,
24kHz mono

11 0x021
8

bit5=
1

106 PCM, 16bit, LSB first, signed,
32kHz mono

11 0x022
0

bit5=
1

107 PCM 16bit, LSB first, signed,
44.1kHz stereo, left channel first

11 0x122
C

bit5=
1

108 PCM 16bit, LSB first, signed,
48kHz stereo, left channel first

11 0x123
0

bit5=
1

109 μ-Law, 8bit, mono, 12kHz 11 0x000
C

-

110 A-Law, 8bit, mono, 12kHz 11 0x010
C

-

111 PCM, 16bit, MSB first, signed,
12kHz mono

11 0x020
C

bit5=
0

112 PCM, 16bit, LSB first, signed,
12kHz mono

11 0x020
C

bit5=
1

113 PCM, 16bit, MSB first, signed,
24kHz stereo, left channel first

11 0x121
8

bit5=
0

Barix AG | 58/110

RTP payload
type

Audio Format Mode Qualit
y

(*)

Flags

127 Generic (see below) - - -

(*) Quality does not reflect bits 10 and 11 (encoder and decoder settings), these
can be set independently.

Payload types 0, 8, 10, 11 and 14 are defined by the RTP standard. Barix defines
assignment for payload types 96 to 112 (dynamic payload types) in the above
tables.

 8.3 Reading audio status

Various audio status information can be obtained by reading from a "negative
offset" and then using the LASTLEN(H) function. INDEX values and corresponding
return values for LASTLEN are listed in the table below.

Syntax:
 READ H, BUFFER, -INDEX

Table 1: Reading the audio device status

Barix AG | 59/110

INDE
X

Name LASTLEN RETURNS

1 IN peak
left

2 IN peak
right

left channel

right channel

input linear audio peak level (see Note1 below)

3 OUT peak
left

4 OUT peak
right

left channel

right channel

output linear audio peak level (see Note1
below)

5 bitrate bitrate in kbits/s

6 cur buf
level

current output buffer level in bytes

7 avg buf
level

average output buffer level in bytes
(since last cca. 5 seconds)

8 input MUX
status

current setting of the input MUX (see Input MUX control Error:
Reference source not found)

9 zero count The decoder's audio buffer is monitored in 100ms intervals for
empty buffer condition. If the buffer level drops to zero within
the 100ms interval, zero count is increased by one. This
counter is reset with every open.
Zero count is updated even if playback active is zero.

10 RTP lost
frames

Number of lost frames during RTP decoding. The value is reset
with every new RTP sequence

11 RTP dupl
frames

RTP decoder only: number of duplicated frames due to the
buffer management (frames are duplicated if encoder is slower
than decoder)

12 RTP drop
frames

RTP decoder only: number of dropped frames due to the buffer
management (frames are dropped if encoder is faster than
decoder)

13 IN peak
log left

left channel

14 IN peak
log right

right channel

input audio peak level in dbFS (see Note2
below)

15 OUT peak
log left

left channel

16 OUT peak
log right

right channel

output audio peak level in dbFS (see Note2
below)

17 playback
active

If audio is open for decoding (or simultaneous decoding and
encoding), typically audio buffer is first filled to a certain level
and first then the playback starts. This status variable shows
(playback_active is non-zero) if the playback has already
started (data are being transmitted to the codec).
This status variable is independent on the encoder.
Please note that in some cases playback_active can change to
0 even during already active playback. This can happen if
rebuffering on buffer underrun is selected in audio flags or if a
new RTP sequence arrives.

Barix AG | 60/110

INDE
X

Name LASTLEN RETURNS

18 resync
count

RTP decoder only: this counter increments every time the RTP
decoder synchronises to a new stream. This can be due to a
buffer underrun or if a frame with a timestamp significantly out
of sync is received from the same source.
This counter together with “zero count” can be used to detect
errors in the stream.
The counter resets with every audio open.

19 cur buf ms RTP decoder only: current duration of the buffered data in
milliseconds

20 avg buf
ms

RTP decoder only: average duration of the buffered data in
milliseconds

21 Last
packet

timestam
p

Time stamp in milliseconds (value of _TMR_(0)) of the last
successful write into audio handle (i.e. decoding).
The time stamp is initialized on opening the audio handle and
updated with every successful data write into audio handle or
with every audio data block transfer via the LINK command.
For more details see chapter 8.8.3.

22 Min jitter

23 Max jitter

Minimum and maximum jitter of incoming RTP packets in
milliseconds.

The jitter is calculated as a difference of the RTP packet
delivery time to the nominal clock given by the timestamp in
the RTP packet. Lost packets don't have any influence on the
calculation as soon as the sender properly sets the timestamp.

Min and max values are measured for 4 seconds and then
buffered. The last measurement is returned (i.e. the values
change every 4 seconds).

NOTE 1:
Linear audio peak levels are in the range 0 – 0x7FFF, linear scale:

0000 = 0%
2000 = 25% (-12dBFS)
4000 = 50% (-6dBFS)
7FFF = 100% (0dBFS)

NOTE 2:
Logarithmic audio peak levels are in dbFS units (dB full-scale). Value 0dBFS refers
to the full-scale value of the AD/DA converter. The peak value is always <=0.

See also example 14.2 on page 90.

 8.4 Setting audio parameters

Audio parameters can be set using the WRITE command with the following syntax
WRITE H,"VALUE",-PARAM_INDEX

INDEX determines the parameter to be set and VALUE is the value to be set.
The below table lists all available parameters. Parameters not supported by the
hardware are ignored.

Barix AG | 61/110

INDE
X

Name Description Possible values

1 mic gain Microphone input gain
settings

0..15 (in 1.5dB steps, starting at
21dB)

default: 0 (21dB)

On VLSI (IPAM 102) based
hardware the following values
are valid:
-6...+15 (in 1.5dB steps from
12dB up to 43.5dB)

2 AD gain A/D converter gain settings.
Please note that the A/D gain
applies for any analog input
including the microphone
input. Therefore for
microphone input both gains
are added up

0..15 (in 1.5dB steps, starting at
-3dB)

default: 0 (-3dB)

3 input
source

Input source switch 1 line in (default)

2 microphone

(*) see Note 2 below

4 SPDIF optical

5 SPDIF coaxial

4 analog
input
mode

Analog input stereo/mono
settings.
(*) see Note1 below

0 mono (left channel
only)

1 stereo (default)

5 output
mode

Analog output settings.

If mono is selected both
channels are mixed together
and the signal is output on
both channels.

Bridge is the same as mono
with the difference that the
polarity on one channel is
inverted

0 stereo (default)

1 mono

2 bridge

6 output
volume
gain

Output gain adjustment

This parameter offsets the
linear volume by the given
amount of dB. It is used only
if volume_type is 0 (linear
volume). If logarithmic
volume is selected this
parameter is ignored.

in dB

default: 0dB

7 loudness Loudness adjustment on
analog output. Linear from 0
(off) to 20 (maximum)

0..20

default: 0 (off)

8 balance Balance control on analog
output.

-10..10 (-10=left, 10=right)
default: 0 (center)

9 treble Treble adjustment on analog
output.

-10..10

default: 0 (no correction)

10 bass Bass adjustment on analog
output

-10..10

default: 0 (no correction)

Barix AG | 62/110

INDE
X

Name Description Possible values

11 volume
type

Volume unit selection.
Volume can be set either in
dB or in percent

(*) see Note3 below

0 5% steps (default)

1 dB

12 volume Volume (amplification)
settings for analog output

(*) see Note3 below

 (see the previous row)

default: 10 (50%)

13 output
mixer

Analog output mixer settings bits
0..6:
Rec.
input

linear scale

0:off, 64: 100%,
127:200%

bits 8-
14:

Playbac
k

linear scale

0:off, 64:100%,
127:200%

Default: 0x4000

(100% playback, rec input off)

14 1st

micropho
ne control

Microphone type settings for
the first microphone

0 off

1 dynamic (phantom
power off) - default

2 electret (phantom
power on)

15 external
amplifier
control

External amplifier control 0 enabled (default)

1 disabled

16 reserved reserved reserve
d

reserved

17 AUX 1
control

First auxilliary audio port
control

0 disabled (default)

1 half-duplex input

2 half-duplex output

18 Input MUX
control

Certain hardware devices
feature an input multiplexer,
where audio connections are
shared between input and
output.

This setting enables to
control the multiplexer.

The actual state of the
multiplexer can be read from
the status parameter Input
MUX status. The value may
differ from the one set if the
multiplexer is forced by a
hardware switch.

0 input only (default)

1 full- duplex

2 output only

Barix AG | 63/110

INDE
X

Name Description Possible values

19 I/O mask
send

For RTP with LINK command
only.

Bitmask of digital inputs to
be sent in RTP header
extension. Bit 0 corresponds
to the first digital input, bit 1
to the second digital input,
etc.

Binary 1 in the mask enables
sending of the respective input,
whereas binary 0 disables
sending of the input.

To completely disable sending
header extensions, set all bits in
the mask to 0 (default).

20 I/O mask
receive

For RTP with LINK command
only.

Bitmask of relays to be
controlled by the remote
party through RTP header
extension. Bit 0 corresponds
to the first relay, bit 1 to the
second relay, etc.

Binary 1 in the mask enables
remote control of the respective
relay, whereas binary 0 disables
remote control of the relay.

It is still possible to control
relays with IOCTL, however
relays with 1 in the mask will
change according to the stream,
as soon as the next RTP frame is
received.

To completely disable remote
control of relays, set all bits in
the mask to 0 (default).

21 Tone
Control:
treble
freq

Tone control setting. Limiting
frequency for the treble
high-shelf filter. Use together
with the “treble” setting
above.

(*) see Note4 below

Value in Hz. Operating range
1000-15000Hz, 1000Hz
resolution.

Default 4000Hz.

22 Tone
Control:
bass freq

Tone control setting. Limiting
frequency for the bass low-
shelf filter. Use together with
the “bass” setting above.

(*) see Note4 below

Value in Hz. Operating range 20-
150Hz, 10Hz resolution.

Default 100Hz.

23 5-Band
Equalizer
Enable

Selects the tone control
either by bass/treble settings
or using 5-band parametric
equalizer.

(*) see Note5 below

0 = disable 5-band equalizer
and enable Bass/Treble control

1 = enable 5-band equalizer and
disable Bass/Treble control

Default: 0

24-28 5-Band
Equalizer
Level

Amplification/attenuation
level in 0.5 dB step for each
band of the 5-band
parametric equalizer

(*) see Note5 below

Level from -32 (-16dB; maximum
attenuation) to +32 (+16dB;
maximum amplification). Value 0
means no change.

Default: 0 for all parameters

(**) see Note6 below

Barix AG | 64/110

INDE
X

Name Description Possible values

29-32 5-Band
Equalizer
Frequency

Cut-off frequency in Hz for
bands 1 to 4 of the 5-band
parametric equalizer. The
last band does not have a
cut-off frequency.

(*) see Note5 below

The frequency is limited for each
band as follows:

Bass (29): 20-150Hz
Mid-bass (30): 50-1000Hz
Mid (31): 1000-15000Hz
Mid-high (32): 2000-15000Hz

The frequencies must be strictly
ascending; e.g. combination 80,
50 is not allowed.

Default: 0 for all parameters

NOTE 1: The analog input mode affects only the analog input switch and not
the number of channels in the encoded stream. It is still possible to encode
stereo stream from a mono input (then both channels will contain the same data
and double bandwidth will be used). To change the number of encoded channels,
see the QUALITY parameter of the OPEN call.

If mono input is selected then only the signal from the left channel is sent to the
encoder (left channel is copied into the right channel).

SPDIF inputs are always stereo and are not affected by the analog input mode
setting.

NOTE 2: If microphone source is selected analog input mode setting is ignored
and mode is forced to mono.

NOTE 3: Logarithmic volume (amplification) is set in 1dB steps from -127dB to
(theoretical maximum) +127dB. The value -127dB mutes the output. The
maximum volume depends on the hardware type and is typically 0dB, however,
on some devices the maximum volume can be up to +48dB. Values above the
maximum volume given by the hardware are clipped to he maximum volume.

NOTE 4: Available only on VLSI based devices.

NOTE 5: 5-Band Parametric Equalizer
Allows to adjust the audio sound in 5 configurable frequency bands: bass, mid-
bass, mid, mid-high, treble.
The equalizer is available only on VS1063 based devices. On other devices
settings 23-32 are ignored.
Either bass/treble control or 5-band equalizer can be active at a time, not both at
the same time. The selection is done by setting parameter 23. Default is
bass/treble control.

NOTE 6: In order to avoid clipping the equalizer does not amplify over 0dB
volume level. I.e. the total amplification of volume+level for each band cannot
exceed 0dB. Levels that would result in amplification above 0dB are clipped to
0dB. Therefore the perceived effect of the equalization can be different at full
volume than at lower volume.
If you intend to boost certain frequency bands use the output volume gain

Barix AG | 65/110

(parameter 6) to reduce the overall amplification by the maximum boost level to
achieve the same equalization independent on the volume setting.
Example: Equalizer level vector +12,+4,-5,-3,+4 boosts bass and treble and
attenuates the mids if volume is lower than -6dB. However at volume level 0dB
(maximum volume) it only attenuates the mids, since bass and treble cannot be
boosted over the 0dB level. In order to have the same effect independent on the
volume set output volume gain to -6dB.

 8.5 Flushing decode buffer
The decoding buffer can be flushed by "writing" zero bytes, i.e.:
WRITE H,"",0

 8.6 Flushing encode buffer
The encoding buffer can be flushed by calling SEEK on the audio handle, i.e.:
SEEK H,0

 8.7 Closing audio
An optional parameter is available to the CLOSE command.

CLOSE H [,E]
By default CLOSE causes an immediate close of the audio device discarding the
content of the internal playback buffer. If called with an optional non-zero
parameter E, the program is blocked until the whole content of the playback buffer
is played and then the audio device is closed.

 8.8 Audio tunelling (audio devices only)
To increase the performance in audio encoding and decoding, a direct link between
a UDP handle or a file and the audio can be established using the LINK command.
The audio data is then copied by the interpreter without assistance of the BCL
program. This feature is useful especially for encoding and decoding high-quality
uncompressed audio transferred via RTP.

The LINK command has the following syntax:

LINK H1, H2 [,A]
Creates a tunnel between handles H1 and H2. Both handles must be open, one as
UDP or as USB file and one as audio. The order of the handles in the command is
not significant. For a link between audio and UDP an additional parameter A
containing a table of destinations is required.

For link between audio and file the audio handle should be open for decoding (raw
or MP3).

For link between audio and UDP the audio handle can be open as an encoder,
decoder or in full-duplex. The audio format can be raw or RTP.

NOTE: In order to use LINK with raw audio data open the audio interface with
flags 129 (RTP buffering algorithm, headerless).

 8.8.1 File playback
Once the LINK command is executed a background process starts reading the USB
file and copying the data into audio. The playback stops at the end of the file and
the file position is equal to the file size.

During the playback audio parameters (e.g. volume) can be set, however no data
should be written to the audio handle using WRITE.

Barix AG | 66/110

An example file player:
OPEN "C_R:usb:///file.mp3" AS 1 ' open USB file
size=FILESIZE(1) ' get the file size
OPEN "AUD:1,6,0,32000" AS 2 ' open audio for MP3 playback
WRITE 2,"7",-12 ' set volume

LINK 1,2 ' start playback

1 IF FILEPOS(1)<>size THEN GOTO 1 ' wait for the end of the file

CLOSE 1 ' clean up and exit
CLOSE 2
END

 8.8.2 Decoder
All incoming UDP traffic on the UDP handle is passed directly to the audio device,
bypassing the BCL program. UDP frames not accepted by the audio device (if open
in RTP mode all non-RTP frames and frames with non-coresponding payload type)
are passed to the BCL program and can be read using UDP READ, either by polling
or in an ON UDP handler.

 8.8.3 Detecting end of stream
An audio stream transferred via RTP or UDP is often terminated by a timeout,
unless special signaling between the two parties is used. If LINK is used the audio
reception is completely handled by the firmware without assistance of the BCL
application. In order to detect an end of stream by timeout the time stamp of the
last packet received is remembered and reported in audio status, parameter 21
(see Last packet timestamp parameter on page 61).

Stream time out can be then detected by the application by reading Last packet
timestamp parameter and comparing with the value of _TMR_(0), even if LINK is
used for audio transfer.

The following example demonstrates how to detect end of stream with 500ms
timeout.

DIM dst(1,1) ' 2 destinations
' dummy for decoder only
' initialised to 0

DIM dummy$(1)
OPEN "UDP:0.0.0.0:3030" AS 1 ' open UDP port
OPEN "AUD:11,17,"+STR$(&H1A30)+",16384" AS 2 ' open audio at 48kHz
WRITE 2,"7",-12 ' set volume

LINK 1,2,dst ' start receiving RTP audio

1
READ 2,dummy$,-21 ' read last pkt. timestamp
timestamp = LASTLEN(2)

IF _TMR_(0)-timestamp>500 THEN ' 500ms timeout detected
SYSLOG "stream time out 500ms" ' close handles and end
CLOSE 1
CLOSE 2

ELSE
GOTO 1 ' no timeout → read again

ENDIF

END

Barix AG | 67/110

 8.8.4 Encoder
Encoded audio is sent either in raw format or formatted as RTP (depending on the
open parameters of the the audio open command) to the provided list of
destinations A. A is a two-dimensional integer array of pairs: (IP address, port).
Entries with IP address equal to 0 are ignored (i.e. no data is transferred).
Broadcast is achieved by setting the IP address to the broadcast address of the
network (e.g. 192.168.0.255) .

The destinations can be altered in runtime by writing to the array A, however, the
IP address and port should be changed atomically. This can be achieved by using
the LOCK command.

The number of destinations is virtually not limited, the only limit is the
performance of the hardware. The number of outgoing streams also depends on
the stream bitrate (higher bitrate means higher system utilisation).

Standard audio READ can not be used with the tunnel feature as no data will be
returned. Audio WRITE can be used in parallel with the tunnel. Audio status can be
read and audio parameters can be set independently.

WRITE to the UDP handle can be used independently on the tunnel.

 8.8.5 Examples
See also example 14.2 on page 90.

48kHz stereo PCM RTP decoder:
DIM dst(1,1) ' 2 destinations

' dummy for decoder only
' initialised to 0

OPEN "UDP:0.0.0.0:3030" AS 1 ' open UDP port
OPEN "AUD:11,17,"+STR$(&H1A30)+",16384" AS 2 ' open audio
WRITE 2,"7",-12 ' set volume

LINK 1,2,dst
1 GOTO 1

32kHz full-duplex stereo PCM RTP encoder and decoder:
DIM dst(2,1) ' 3 destinations

OPEN "UDP:0.0.0.0:3030" AS 1 ' open UDP port
OPEN "AUD:11,17,"+STR$(&H1E20)+",16384" AS 2 ' open audio
WRITE 2,"7",-12 ' set volume

' initialise destinations
dst(0,0)=RESOLVE("10.0.0.7") ' IP address
dst(0,1)=3030 ' port
dst(1,0)=RESOLVE("my.server.com") ' IP address
dst(1,1)=10000 ' port
dst(2,0)=RESOLVE("another.server.com") ' IP address
dst(2,1)=1234 ' port

LINK 1,2,dst

Barix AG | 68/110

 9 Miscellaneous functions

 9.1 Network functions

RESOLVE (E$)
Resolves a string address to an IP address stored in integer. E$ can be either a
numeric IP address in the dot notation or a DNS address. If E$ is a DNS address,
tries to resolve it asking the configured DNS servers. Then returns the IP address
as an integer in the range -2147483648...2147483647.

IP address written as A.B.C.D is put into a signed 32-bit number, A into LSB and D
into MSB. If D<128 then the resulting number is A+256*B+65536*C+16777216*D, if
D>=128 then the resulting number is A+256*B+65536*C+16777216*D-4294967296.

Example:
192.168.2.3 results in 192+256*168+65536*2+16777216*3=50505920.

If the DNS resolution fails or E$ is not a valid IP address, the function returns 0.

Note: For converting addresses the other way around use SPRINTF$("%lA", E)
(see above).

 9.2 Diagnostic functions

PING (E$, E)
Returns the time period (in milliseconds) the device with IP address or DNS address
E$ needed to respond to a PING (ICMP echo) request, or 0 if no reply has been
received within E milliseconds (timeout).

Code example:
IP$="192.168.2.18"
rtime=PING(IP$,50)

stores the time period needed to receive the PING reply from the host with IP
address 192.168.2.18

SYSLOG E$ [,E]
Sends the E$ as a UDP message to Syslog (port 514) to the address configured in
the system. The optional parameter E specifies the debugging level. The maximum
length of the message is 255 characters.

Code example:
SYSLOG "ALARM"

 9.3 Cryptographic functions
RANDOM([E])

interfaces to the built-in non-linear additive feedback 16-bit pseudo-random
number generator.

Called without parameters returns the next pseudo-random number in the
sequence as a positive value between 0 and 65535.

Barix AG | 69/110

When called with parameter E , sets E as the seed for a new sequence of pseudo-
random numbers and returns 0.

Note: When initializing the seed, RANDOM has to be called in an assignment,
e.g.:

dummy=RANDOM(123)
SYSLOG “random number “+STR$(RANDOM())

MD5$(S$, E , [E0]) (Audio
only)

calculates the MD5 sum of the first E bytes of S$. The optional parameter E0
defines the return format. If omitted or set to 0 the function returns 16 binary
characters. If set to 1 returns the MD5 sum in hexadecimal ASCII notation (with
capital letters), e.g.:

SYSLOG MD5$("hello",5,1)

sends a message "5D41402ABC4B2A76B9719D911017C592”

Barix AG | 70/110

 10 Direct hardware access

BCL offers a set of functions for accessing hardware dependent inputs and outputs
(e.g. digital inputs and outputs, analog inputs and outputs, relays, etc.). The
access is provided through a set of general registers, their meaning is platform
specific.

Please see the product specific technical documentation for more details about IO
register mapping.

IOCTL E0, E
Sets the I/O register E0 to the value E.

This function is hardware dependent.

Code example:
IOCTL 1,1

activates the first digital output 1 on the Barionet.

IOSTATE (E0)
Returns the current state of I/O register E0.

Code example:
INP1=IOSTATE(201)

stores the state of the digital input 1 on the Barionet into the variable INP1.

Barix AG | 71/110

 11 SNMP Interface

SNMP walk and traps are supported in BCL. On audio platforms and Barionet 50
also a set of strings is supported. See the Barionet MIB for a complete list of
objects.

 11.1 Integers
The IO map is exported to the SNMP interface as a table of integers. See the
product specific technical documentation and the Barix MIB for more details.

 11.2 Text strings (audio devices and Barionet 50)
A set of user definable strings is accessible via the SNMP interface. The string
variables are defined as _Sxx$ where xx is a number from 1 to 64 providing a
maximum number of 64 strings. The strings are stored in the table:
iso(1).org(3).dod(6).internet(1).private(4).enterprises(1).barix(17491).produ
cts(1).abcl(5).gpt(1).gptTable(1)

The maximum string length is 127, however if not specified otherwise, the string is
allocated to the default size of 256 bytes (only the first 127 bytes are available to
the SNMP interface).

Only the strings defined by the BCL program (allocated using the DIM statement)
are available, the remaining strings are empty and do not consume any space in
memory.

The _Sxx$ strings can be accessed via SNMP walk, sent in a trap, but also used in
string expressions in the BCL program as any other strings.

 11.3 Traps
A trap can be sent by the BCL program:

 11.3.1 Barionet 100

TRAP E$, N1, [N,]
Sends an enterprise trap number N1 to IP or DNS address E$. On the Barionet only
the integers from the IO table can be sent in a trap. The trap can contain virtually
any number of entries, the only restriction is that the expanded trap must fit into
one UDP packet.

The objects of the integer IO table can be sent in a trap:
iso(1).org(3).dod(6).internet(1).private(4).enterprises(1).barix(17491).produ
cts(1).barionet(2).bariInputTable(2).bariInputEntry(1)

Two objects of the table can be addressed: bariInputIndex(1) and
bariInputValue(2)

The list of integer parameters N of the TRAP command following the IP address E$
are:

● bariInputIndex(1) – for N>10000, index N-10000 is addressed
● bariInputValue(2) – otherwise

Example:
To send a trap 3 containing the digital input 1 (IO 201) and digital input 2 (IO 202)
to 192.168.0.254.
TRAP "192.168.0.254",3,10201,201,10202,202

The following objects will be sent in the trap:
● enterprises.17491.1.2.2.1.1.201
● enterprises.17491.1.2.2.1.2.201
● enterprises.17491.1.2.2.1.1.202

Barix AG | 72/110

● enterprises.17491.1.2.2.1.2.202

 11.3.1 Audio devices and Barionet 50
The trap interface on audio devices is more general.

TRAP E$, N1, N2, E1$, [E2$]
Sends an SNMP trap to IP or DNS address E$. N1 is the trap type: public (0) or
enterprise (6) and N2 is the trap number. Object IDs follow as E1$, E2$, etc. The
trap can contain virtually any number of objects, the only restriction is that the
expanded trap must fit into one UDP packet.

The format of the OIDs is the following: <type><OID subset string>
Where type denotes the public MIB branch (type is “P”) or Barix enterprise MIB
branch (“E”). The OID_subset_string is a user friendly ASCII formatted subset of
the OID.

Type:
P is iso(1).org(3).dod(6).internet(1).mgmt(2).mib-2(1)
E is iso(1).org(3).dod(6).internet(1).private(4).enterprises(1).barix(17491)

Example:
To send enterprise trap 3 containing SysUpTime and text_entry 4 to
“myhost.mydomain.com”
SysUpTime is P.system(1).sysUpTime(3).0
text_entry 4

E.products(1).abcl(5).gpt(1).gptTable(1).gptEntry(1).gptValue(2).4
The BCL variable for the text string 4 is _S04$.

DIM _S04$

_S04$="Hello World"

TRAP "myhost.mydomain.com",6,3,"P1.3.0","E1.5.1.1.1.2.4"

Barix AG | 73/110

 12 WEB interface

To interact with BCL programs from web pages a simple tag interface is
implemented.

 12.1 HTML tags

Special dynamic marks “&LBAS” (see the product specific documentation for more
details about dynamic marks) allows the BCL program to interact with the user
through web pages. It is possible to read content of a variable and to call a BCL
subroutine.

While processing the request the internal webserver parses the dynamic marks
and substitutes them with their values (calls a subroutine if needed) in the order
they appear in the HTML file.

To enable dynamic tags, the following special tag must be present at the beginning
of the HTML file:
&L(0,"*",1);

 12.1.1 Displaying variables in webpages
Use the following dynamic marks to insert the current value of any BCL variable in
dynamic HTML pages:
&LBAS(1,"%ld",V);
&LBAS(1,"%lu",V);
&LBAS(1,"%fs",S$);

where V is an integer variable or a cell of an integer array and S$ is a string
variable.

Syntax of the LBAS tag is the following:

&LBAS(1,<format_string>,<variable>);

where format_string coresponds to SPRINTF formatting (see chapter 5.6.2 on
page 17) and variable is the name of the variable to be printed, or a cell in an
integer array.

Please note that for string variables the format string must be always "%fs".

The functions will return "[NO_VAR]" if there is not any variable of that name used
in the program or the BCL interpreter has not started yet or an array subscript is
out of range.

Following example displays the current uptime in seconds (the _DTS_ variable) on
the web page and some other variables:
HTML file:
&L(0,"*",1);
<html>
<head>
</head>
<body>
Time since reboot: &LBAS(1,"%lu",_DTS_);seconds.
A=&LBAS(1,”%ld”,A);
B(4)=&LBAS(1,”%ld”,B(4));
C$=&LBAS(1,”%fs”,C$);
D(3,7)=&LBAS(1,”%ld”,D(3,7));
</body>

Barix AG | 74/110

</html>

 12.1.2 Calling a subroutine from a webpage
Fore more complex output the BCL program can be directly called in order to
create a dynamic content of a web page. The following dynamic mark is used:

&LBAS(2,”<string>”,0);

which triggers the following set of actions:

1. The _CGI_$ variable is loaded with the value string, the webserver is
blocked and the BCL interpreter is called.

2. The program polls the _CGI_$ variable or contains ON CGI handler and
according to the content of the _CGI_$ performs a specific action (e.g. calls
a particular subroutine).

3. The program can directly output to the HTTP stream by writing into handle
-1.

4. When the processing of the CGI request is finished, the _CGI_$ variable
must be set to an empty string.

5. The webserver detects that the _CGI_$ has been cleared and continues
with further processing.

Note: When using &LBAS(2,...); dynamic mark, the speed of generating the HTML
page depends on the speed of the handling subroutine, therefore the subroutine
should be kept as fast as possible.

Note: Other (hardware dependent) dynamic marks may be available on certain
hardware. See the respective product documentation.

 12.1 Variable setting by CGI
To set a value of a BCL variable from a web page, use the "BAS.cgi" cgi script. As
parameters, variable=value pairs are given. Example, how it could be used in the
HTML code:

where "BAS.cgi" is the name of the interface script, "&" is the delimiter between
variables and each variable value is specified as "name=value".

In the above example, V and S$ are integer and string variables, already defined in
the BCL program.

Note: Do not wrap string values in quotes.

It is also possible to use the HTML form construct for the same purpose, as it is
shown in the following example:

<form name="DT" action="BAS.cgi" method="GET" target="empty">
 <input type="hidden" name="S$" value="start">
 <input type="hidden" name="V" value="0">
 <input type="submit" value="Send DATA">
</form>

Note: All BCL variables names are internally stored in uppercase format,
therefore references to variables using the above interfaces must also specify
variable names in upper case.

Barix AG | 75/110

 12.2 CGI handling in the BCL
To handle web requests directly in the BCL program, the "basic.cgi" CGI script
can be used.

All parameters passed to the script after "?" are accessible in a special string
variable _CGI_$ from the BCL program. This variable must be declared and set to
the empty string before use.

To receive the request, either check this variable periodically, or use the ON CGI...
statement.

After reading the value of _CGI_$ and before sending the reply, clear the _CGI_$
variable and call DELAY 0:
CGI$=""
DELAY 0

The reply to the browser can then be sent in three ways:
1. Using the special handle -1:

WRITE -1,E$,0

The reply should contain the HTTP header in this case.

Instead of "closing" the handle, set the _CGI_$ variable to "*" (asterisk) in
order to finish sending the reply.

Code example (assume an integer in _CGI_$ and return its value increased
by one):
DIM TEMP$(256)
1 ON CGI GOSUB 2
GOTO 1
END
2
TEMP$=STR$(1+VAL(_CGI_$))
CGI$=""
DELAY 0
WRITE -1,"HTTP/1.0 200 OK\r\nContent-type:
text/plain\r\n\r\n",0
WRITE -1,TEMP$,0
CGI$="*"
RETURN

2. Set _CGI_$ to asterisk ("*") followed by a filename of a file in the flash
memory. That file will then be sent as the reply.
Code example:
DIM TEMP$(256)
1 ON CGI GOSUB 2
GOTO 1
END

2_CGI_$=""
DELAY 0
CGI$="*index.html"
RETURN

3. Assign the reply to _CGI_$ variable.
 In this case, the HTTP headers are created by the BCL automatically.
Code example:
DIM TEMP$(256)
1 ON CGI GOSUB 2

Barix AG | 76/110

GOTO 1
END
2 TEMP$=STR$(1+VAL(_CGI_$))
CGI$=""
DELAY 0
CGI$= TEMP$
RETURN

Barix AG | 77/110

 14 Preprocessor

The BCL language offers simple preprocessor directives to include files and create
macros. The preprocessor built in the tokenizer processes the BCL source before
the tokenization takes place.

 12.1 Preprocessor directives

Preprocessor directives must be terminated with CRLF or a comment. Macro
handling is case sensitive and is not recursive. The following directive are
available:

#define source target replaces the "source" macro template with the
"target" macro text. Macro parameters named
from #1 to #9 can be used (see the examples
below). The preprocessor scans the code line-
by-line, finds the pieces of code matching the
"source" template and replaces them
according to the macro definition.

#include file_name.bcl appends the "file_name.bcl" module from the
BCL subdirectory to the end of the currently
collected BAS file. Usage of the same "library"
modules in different projects is possible this
way. However name and label conflicts must
be avoided across different modules, because
all names and labels will be global in the final
BAS file.

 12.2 Using the preprocessor

In order to use the preprocessor, the BCL source as well as all the files to be
included must be placed in the "BCL" subdirectory of the main project directory. All
files in the “BCL” subdirectory (including the main project file) must be named
with the .bcl extension instead of the .bas extension.

To tokenize the project, use the following command:

tokenizer.exe <file_name.bcl> [-<debug_level>]

where “file_name.bcl” is the name of the main project file.

The preprocessor will read the “file_name.bcl” from the “BCL” subdirectory,
process it and output the result into “file_name.bas” in the main project
directory. The processing comprises substitution of macros and including other
project files. Files included with the #include directive are searched in the “BCL”
directory and added to the end of the currently collected “file_name.bas”. This
process recurses to all included files.

After preprocessing the resulting “file_name.bas” is converted into
“file_name.tok”

WARNING: The original project files will NOT be included in the COB-file.

Code examples:

#include pr400.bcl 'module with subroutine with label 400
#include pr600.bcl 'module with subroutine with label 600

Barix AG | 78/110

#define s#1[#2]= midset s#1,#2,1, 'macros for using string
#define s#1[#2] midget(s#1,#2,1) 's* as array of chars
#define SYSTIME _TMR_(0) 'replaces the old SYSTIME function
#define TRUE -1 'replaces logical constant TRUE with a value
#define FALSE 0 'replaces logical constant FALSE with a value
#define FACTORIAL 1010 'replaces a text LABEL with a real number

 12.3 Predefined macros
The preprocessor directive _COMPILETIME_ is replaced by the date and time of the
tokenisation of the BCL source. It can be used in a #define statement to define a
macro containing the build date of the program. E.g.

#define BUILD_DATE _COMPILETIME_

syslog "Starting program X (BUILD_DATE)"

Will print a message similar to:

Starting program X (2009/01/22 10:02:38)

Barix AG | 79/110

 13 Interpreter information

 13.1 Execution speed

The execution speed of BCL programs depends on the specific hardware and
firmware used, it is typically more than 5000 tokens per second. In other words:
each instruction needs in average less than 0.2 milliseconds to execute. For
complex or time critical applications the LOCK command can be used to lock
(actually setting to low priority) other CPU tasks and only run the BCL interpreter.

 13.2 Runtime environment limitations

The runtime environment has size constraints resulting from the hardware platform
used which should be considered when writing the BCL code.

In the current version of the BCL the following limitations exist:

 maximum number of numeric labels 1000
 range of numeric labels 1-32767
 maximal FOR-NEXT nesting 25
 maximal GOSUB-RETURN nesting 23
 maximal recursive nesting (amount of brackets) 10
 maximum number of variables of type integer 255
 maximum number of variables of type string 255
 length of variable’s names unlimited
 number of significant characters in variable names 32
 maximal dimensions of arrays of type integer 2
 size of integer variables 32 bit
 default size of variables of type string

(if not specified by the DIM statement) 256 bytes
 maximal number of open files/streams16 (max 6 TCP stream)
 default size of buffers for files/streams 1024 bytes

As the significant number of characters in a variable’s name is 32 the tokenizer will
issue an error when variables are defined using the same thirty two characters.

 13.1 System variables

Several system variables interfacing various system parameters are predefined by
the interpreter. These do not have to be declared by a DIM statement and can be
used directly in the program. Calling DIM on system variables results in no
operation.

Variable name Value

ARG holds the number of arguments given to the function, see section
on page 29

CGI used for CGI request handling, see section 12.2 on page 76

DTS time counter, see section 6.7 on page 24

ERL line number of the last error occurred, see section 6.7 on page 24

ERR error code of the last error, see section 6.7 on page 24

TMR array of time counters, see section 6.7 on page 24

Barix AG | 80/110

Barix AG | 81/110

 14 Debugging

The Barix BCL interpreter allows debugging of programs using the syslog protocol1, all
warnings and error messages are sent to the network.

Example of an error message:
Oct 21 13:14:05 192.168.2.145 BCL(53): 53 General syntax error: wrong
or not allowed delimiter or statement at this position

It is also possible to send custom messages using the SYSLOG statement:

Code example:
SYSLOG "TESTING SYSLOG OUTPUT"

results in syslog message similar to this:
Dec 2 23:42:55 192.168.2.145 TESTING SYSLOG OUTPUT

Exact message format depends on the syslog daemon program used.

 14.1 Error messages
Error

number
Meaning

0 BCL file not exisiting or invalid tokencodeversion (use
correct tokenizer version)

1 PRINT was not last statement in line or wrong delimiter
used (allowed ',' or ';')

2 Wrong logical operator in IF statement (allowed
'=','>','>=','<','<=','<>')

3 ONLY String VARIABLE can be used as parameter in
OPEN,READ,PLAY,MIDxxx,EXEC

4 Wrong delimiter/parameter is used in list of parameters
for this statement/function

5 ON statement must be followed by GOTO/GOSUB statement

6 First parameter of TIMER statement must be 1..4 (# for ON
TIMER# GOSUB...)

TIMER 0 is obsolete, see section , page 97

7 Wrong element is used in this string/numeric expression,
maybe a type mismatch

8 Divided by Zero
division by zero, for example: Var1=Var2/0

9 Wrong label is used in GOTO/GOSUB statement (allowed
only a numeric constant)

10 Wrong symbol is used in source code, syntax error,
tokenization is impossible

can be caused by too long quoted string constant
(longer than 255 characters)

11 Wrong size of string/array is used in DIM (allowed only a
numeric constant)

12 Wrong type in DIM statement used (only string variable or
long variable/array allowed)

1 Syslog is a well known reporting protocol usually using UDP port 514. Check the Internet
for a free Syslog daemon.
Alternatively a universal logging tool (IP logger) available free of charge from
www.barix.com can be used.

Barix AG | 82/110

Error
number

Meaning

13 DIM was not last statement in line or wrong delimiter
used (allowed only ',')

14 Missing bracket in expression or missing quote in string
constant

15 Maximum nesting of calculations exceeded (too many
brackets)

16 Assignment assumed (missing equal sign)

17 Wrong size of external tokenized TOK file (file might be
corrupt)

18 Too many labels needed, tokenization is impossible

19 Identical labels in source code found, tokenization is
impossible

20 Undefined label in GOTO/GOSUB statement found,
tokenization is impossible

21 Missing THEN in IF/THEN statement

22 Missing TO in FOR/TO statement

23 Run-time warning: Possibly, maximum nesting of FOR-NEXT
loops exceeded

too many nested FOR loops

24 NEXT statement without FOR statement or wrong index
variable in NEXT statement

25 Maximum nesting of GOSUB-RETURN calls exceeded

26 RETURN statement without proper GOSUB statement
can be caused by improper use of GOTO statement

27 Lack of memory for temporary 1 kilobyte buffer in WRITE

28 String variable name conflict or too many string
variables used

29 Long variable name conflict or too many long variables
used

30 Insufficient space in far memory for temp string,
variable or program allocation

31 Current Array index bigger then maximal defined index in
DIM statement

32 Wrong current number of file/stream handler (allowed only
0..4)

33 Wrong file/stream type/type name or file/stream is
already closed

34 This file/stream handler is already used or file/stream
already opened

35 Missing AS statement in OPEN AS statement

36 Wrong address in IOCTL or IOSTATE

37 Wrong serial port number in OPEN statement

38 Wrong baudrate parameter for serial port in OPEN
statement

39 Wrong parity parameter for serial port in OPEN statement

40 Wrong data bits parameter for serial port in OPEN
statement

Barix AG | 83/110

Error
number

Meaning

41 Wrong stop bits parameter for serial port in OPEN
statement

42 Wrong serial port type parameter in OPEN statement

43 Run-time warning: You lost data during PLAY -- Please,
increase string size

44 For TCP/CIFS file/stream only handler with number 0..5
are allowed

45 Only standard size (256 bytes) string variable allowed
for READ and WRITE in STP file

46 Wrong or out of string range parameters in MID$ or MIDxxx

47 Only one STP/F_C file can be opened at a time

48 '&' can be used ONLY at the end of a line

49 Syntax error in multiline IF...ENDIF (maybe wrong
nesting)

50 Length of Search Tag must not exceed size of target
String Variable for READ

51 DIM string/array variable name already used

52 Wrong user function name or array declaration missing

53 General syntax error: wrong or not allowed delimiter or
statement at this position

can be caused by too long quoted string constant

54 Run-time warning: Lost data during UDP READ -- Please,
increase string size

too small buffer given to READ

55 Run-time warning: Lost data during UDP receiving -- 1k
buffer limit

56 Run-time warning: Impossible to allocate 6 TCP handles,
if 6 are needed free up TCP command port and/or serial

57 Run-time warning: Lost data during concatenation of
strings -- Please, increase target string size (DIM
statement)

target string size (either set using DIM or the default) is
insufficient

58 Run-time warning: Lost data during assignment of string
-- Please, increase target string size (DIM statement)

target string size (either set using DIM or the
default) is insufficient

59 Indicated flash page (WEBx) is out of range for this HW

60 COB file (F_C type) exceeds 64k limit

Barix AG | 84/110

 17 Example programs

 14.1 Playin g an MP3 file from the USB filesystem

 DIM _Ms$(2048)
 OPEN "AUD:1,6,0,4000" AS 7
11
 SYSLOG "playback"
 OPEN "C_R:usb:///file.mp3" AS 2
101 READ 2,_Ms$
 l=LASTLEN(2)
 IF l<=0 THEN
 SYSLOG "end of file"
 CLOSE 2
 GOTO 11
 ENDIF
102 IF filesize(7)<l THEN GOTO 102 ' check if there's enough space
 ' in the audio buffer
 WRITE 7,_Ms$,l
 GOTO 101
 END

 14.2 Record audio into an MP3 file
Encode audio line input as MP3 and record for 60 seconds into file.mp3 on the local
USB filesystem. For details about setting the audio parameters see section 8 on
page 51. For details about _DTS_ variable see section 6.7 on page 24.

DIM _M_r$(5000)
OPEN "C_W:usb:///file.mp3" AS 4
OPEN "AUD:2,0,"+str$(1024+7*16+1) AS 7 'mp3 encoding
WRITE 7,"10",-1 'set MIC Gain
WRITE 7,"10",-2 'set A/D Gain
WRITE 7,"1",-3 'set input source (1-line)
WRITE 7,"20",-12 'set Volume (100%)

time = _DTS_
1151 READ 7,_M_r$,4096 : ftp_l = LASTLEN(7)
IF ftp_l>0 THEN WRITE 4,_M_r$,ftp_l
IF (_DTS_-time)<60 THEN GOTO 1151
CLOSE 7
CLOSE 4
END

 14.3 Sendi ng an email
Send an e-mail assuming the correct SMTP server address is inserted and no errors
occur (the error handling is not implemented in the example):

DIM BUFFER$(200)
BUFFER$=""
OPEN "TCP:192.168.2.130:25" AS 0
10
IF NOT(CONNECTED(0)) THEN GOTO 10
1 READ 0,BUFFER$,0
IF LEN(BUFFER$)=0 THEN GOTO 1
WRITE 0,"HELO example.com\r\n",0
2 READ 0,BUFFER$,0
IF LEN(BUFFER$)=0 THEN GOTO 2
WRITE 0,"MAIL FROM: <joey@example.com>\r\n",0
3 READ 0,BUFFER$,0

Barix AG | 85/110

IF LEN(BUFFER$)=0 THEN GOTO 3
WRITE 0,"RCPT TO: <agnes@example.com>\r\n",0
4 READ 0,BUFFER$,0
IF LEN(BUFFER$)=0 THEN GOTO 4
WRITE 0,"DATA\r\n",0
5 READ 0,BUFFER$,0
IF LEN(BUFFER$)=0 THEN GOTO 5
WRITE 0, "SUBJECT:Greetings\r\n"+&

"From:joey@example.com\r\n"+&
"To:agnes@example.com\r\n"+&
"from joey\r\n"+&
".\r\n",0

6 READ 0,BUFFER$,0
IF LEN(BUFFER$)=0 THEN GOTO 6
WRITE 0,"QUIT",0
CLOSE 0
END

 14.4 Streaming MP3 over RTP
Play an RTP MP3 stream received on UDP port 5555.

 DIM _Ms$(2048)
 OPEN "UDP:0.0.0.0:5555" AS 4
 OPEN "AUD:1,7,0,20000" AS 7
 WRITE 7,"18",-12 'set volume to 90%

1099
 l = LASTLEN(4)
 IF l >= 0 THEN GOTO 1099
 READ 4,_Ms$
 WRITE 7,_Ms$,-l
 GOTO 1099

 14.5 RTP Sender
Encode MP3 from stereo analog input and broadcast as RTP on UDP port 5555.

 DIM _Mb$(4097)
 DIM rho$(50)

 rho$=SPRINTF$("%A",5) ' local broadcast address

 OPEN "UDP:0.0.0.0:5555" AS 4
 OPEN "AUD:2,7,"+str$(&H71)+",0" as 7
 IF MEDIATYPE(7)=0 THEN SYSLOG "ERROR: Audio open failed"
 WRITE 7,"1",-4 ' stereo
 WRITE 7,"1",-3 ' source analog input
 i=1

10 READ 7,_Mb$
 l=LASTLEN(7)
 IF l>0 THEN WRITE 4,_Mb$,l,rho$,5555
 GOTO 10

 14.6 TCP serial gateway

 DIM S$(512)

 tcp$= "TCP:0.0.0.0:10001" 'TCP listener on port 10001

Barix AG | 86/110

 OPEN tcp$ AS 1
 OPEN "COM:9600,N,8,1,NON:1" AS 2 'Open serial port
 WRITE 2, "Waiting for TCP connection...\r\n",0
101 IF CONNECTED(1) = 0 THEN GOTO 101 'wait for TCP connection

 WRITE 2, "Connection established\r\n",0
 tcp$ = "Host: "+RMTHOST$(1)+", Port: "+STR$(RMTPORT(1))+"\r\n"
 WRITE 2, tcp$, 0

111 READ 2,S$ 'read serial input
 l=LASTLEN(2)
 IF l>0 THEN WRITE 1,S$,l 'send out to TCP
 IF ASC(S$) = 27 THEN GOTO 112 'ESC code to Break
 IF NOT(CONNECTED(1)) THEN GOTO 112 'check TCP connection
 READ 1, S$
 l=LASTLEN(1)
 IF l>0 THEN WRITE 2,S$,l 'read chars from TCP
 GOTO 111

112 WRITE 2,"Terminal disconnected\r\n",0
 CLOSE 1
 CLOSE 2
 END

Barix AG | 87/110

 14.7 The Wiegand reader
26-bit Wiegand reader access with queuing and socket to listen to
 DIM Com$(24) ' file name for open function
 DIM s$(256),p$(256) ' string variables for read and output
 DIM i,rdr,rlen ' loop variable, reader, read len
 DIM qu(200,3) ' queue for reader id and data (not

 optimised, could be 1 word)
 DIM quin,quout ' in and out pointer to reading
queue

 COM$ = "RDR:" ' open reader interface
 OPEN Com$ AS 4

 COM$ = "TCP:0.0.0.0:10009" ' tcp listening
socket
 OPEN COM$ AS 1
 quin=1 quout=1
 SYSLOG "Wiegand reader demo 2.1",2

100
 READ 4,s$,0
 IF LASTLEN(4)>0 THEN GOSUB 1000 ' ID read, get data and

 store in queue
 IF AND(CONNECTED(1),quin<>quout) THEN

 p$=STR$(qu(quout,1)) &
+SPRINTF$(",%04lx\r\n",qu(quout,2))+ &
SPRINTF$(",%06lx\r\n",qu(quout,3))

 WRITE 1,p$,0
 p$="from qu entry "+STR$(quout)+" sent: "+p$
 SYSLOG p$,6
 quout=quout+1

 IF quout=201 THEN quout=1 ' next storage space, wrap to 1
 ENDIF
 GOTO 100

1000

' get reader ID (1 or 2)
 IF AND(MIDGET(s$,1,1),128) THEN rdr=2 ELSE rdr=1

' get read length (how many bits)
 rlen=AND(127,MIDGET(s$,1,1))
 p$=SPRINTF$("Wiegand read from %u, ",rdr) &

+SPRINTF$(" %02u bits: ",rlen)
 FOR i=2 TO LASTLEN(4)
 p$=p$+SPRINTF$("%02x ",MIDGET(s$,i,1))
 NEXT i
 SYSLOG p$,5
 ' if 26 bits, then decode to "real" 3 bytes
 IF rlen=26 THEN
 b1=AND(255,SHL(MIDGET(s$,2,1),1))+SHR(MIDGET(s$,3,1),7)
 b2=AND(255,SHL(MIDGET(s$,3,1),1))+SHR(MIDGET(s$,4,1),7)
 b3=AND(255,SHL(MIDGET(s$,4,1),1))+SHR(MIDGET(s$,5,1),7)
 v1=0
 v2=b1*65536+b2*256+b3 ' store 24bit wiegand ID
 GOTO 1100
 ENDIF
 IF rlen=44 THEN
 v1=MIDGET(s$,2,1)*256+MIDGET(s$,3,1)
 v2=(MIDGET(s$,4,1)*256+MIDGET(s$,5,1))*256+MIDGET(s$,6,1)
 GOTO 1100
 ENDIF
 RETURN
1100 ' now store in queue

Barix AG | 88/110

 qu(quin,1)=rdr ' store reader number
 qu(quin,2)=v1 ' first part of value
 qu(quin,3)=v2 ' second part of value (typ. 24 bit wiegand
id)

 SYSLOG "stored in qu entry "+STR$(quin),6
 i=quin+1
 IF i=201 THEN i=1 ' wrap

' only store if this does not overrun queue !
 IF i<>quout THEN quin=i
 RETURN
END

 14.1 Simple internet radio player
Plays an internet radio stream from a shoutcast/icecast server.

 DIM adr$(256)
 DIM path$(256)
 DIM _Mb$(4096)
 DIM l,t
 DIM bufms

 adr$="vruk.sc.llnwd.net" ' remote server
 port=12265 ' remote port
 path$="/" ' remote path

 bufms=2000 ' buffer for N ms before playing
 vol=70 ' volume in percent

 OPEN "AUD:1,18,0,"+str$(bufms) as 4 ' MP3 decoding+rebuffering
 WRITE 4, str$(vol/5), -12 ' set volume

 SYSLOG "opening "+adr$+"..."
 OPEN "TCP:"+adr$+":"+str$(port) as 0 ' open TCP connection

 SYSLOG "waiting for connection..."
 t=_TMR_(0)
1 IF CONNECTED(0)=0 THEN ' wait for the remote server
 IF _TMR_(0)-t>1000 THEN
 SYSLOG "server does not respond"
 GOTO 99
 ENDIF
 GOTO 1
 ENDIF

 SYSLOG "sending GET..."
 WRITE 0, "GET "+path$+" HTTP/1.0\r\n\r\n",0 ' send HTTP GET

 SYSLOG "waiting for response..."

4 t=_TMR_(0)

5 IF and(CONNECTED(0),filesize(0)=0) THEN
 IF _TMR_(0)-t>1000 THEN
 SYSLOG "connection timed out"
 GOTO 99
 ENDIF
 GOTO 5 ' wait for more data
 ENDIF
 t=_TMR_(0)

Barix AG | 89/110

 _Mb$="x"
 READ 0, _Mb$, 0 ' read and print the response header
 IF LASTLEN(0)>0 THEN
 SYSLOG "header: "+_Mb$
 ELSE
 IF LEN(_Mb$)=0 THEN GOTO 9 ' empty line -> end of the
header
 ENDIF
 GOTO 4

9
 SYSLOG "playing..."
10
 READ 0, _Mb$ ' read data from socket
 l=LASTLEN(0)
 IF l THEN WRITE 4,_Mb$,l ' if any data, send them out
 IF CONNECTED(0) THEN GOTO 10

 SYSLOG "playback finished"
99
 SYSLOG "closing connection"
 CLOSE 0
 CLOSE 4

 END

 14.2 RTP player with statistics

The below example demonstrates the usage of the LINK command in a simple RTP
MP3 receiver. The program first opens UDP port 10000 and establishes a link with
the audio interface. Then it periodically reads audio status and reports to syslog.

 DIM dst(0,1) ' dummy destination for LINK
 DIM a$

 OPEN "UDP:0.0.0.0:10000" AS 1 ' open UDP receiver at port 10000
 OPEN "AUD:1,1,0,10000" AS 7 ' open audio for RTP

 WRITE 7,"7",-12 ' set volume

 LINK 1,7,dst ' establish receiver link

2
 READ 7,a$,-5 ' bitrate
 br=LASTLEN(7)

 READ 7,a$,-6 ' current buffer level
 lev=LASTLEN(7)

 READ 7,a$,-9 ' zero count (buffer underrun)
 zero=LASTLEN(7)

 READ 7,a$,-10 ' lost frames
 lost=LASTLEN(7)

 READ 7,a$,-11 ' duplicated frames
 dupl=LASTLEN(7)

 READ 7,a$,-12 ' dropped frames
 drop=LASTLEN(7)

 SYSLOG

Barix AG | 90/110

 "RTP statistics: bitrate="+STR$(br)+ &
 ", buffer level="+STR$(lev)+ &
 ", zero count="+STR$(zero)+ &
 ", lost frames="+STR$(lost)+ &
 ", duplicated frames="+STR$(dupl)+ &
 ", dropped frames="+STR$(drop)
 DELAY 1000
 GOTO 2

Barix AG | 91/110

 15 Syntax summary

All elements noted in bold in this summary can be surrounded by Whitespace.
Whitespace is any sequence consisting of:

● spaces (" ")
● tabulators (" ")
● ampersand ("&") followed by newline

BCL program code is a sequence consisting of:
● Comments
● Unnumbered Lines
● Numbered Lines

ending with END or RETURN and followed by the end of file

Line number is a sequence of numerical characters ("0123456789")

Comment is a sequence of characters satisfying:
● first character is an apostrophe (')
● last two characters are CR/LF (newline)
● CR/LF is not used anywhere else in the sequence

Numbered line consists of:
1. Line number
2. Unnumbered Line

Unnumbered Line is one of the following:
● Declaration followed by newline
● Sequence of Statements separated by Statement delimiters

and ended by newline or Comment

 15.1 Variables, Constants, Expressions

Unsigned integer constant is:
● either: a sequence of numerical characters ("0123456789")
● or : "&H" followed by a sequence of hexadecimal characters

("0123456789ABCDEF")

Integer variable name is a string beginning with letter and otherwise containing
only underscores and alphanumerical characters

String variable name is a string beginning with letter, ending with "$" and
otherwise containing only underscores and alphanumerical
characters

One dimensional array element is:
1. Integer variable name
2. left parenthesis "("
3. Integer expression
4. right parenthesis ")"

Two dimensional array element is:
1. Integer variable name
2. left parenthesis "("
3. Integer expression
4. comma ","
5. Integer expression

Barix AG | 92/110

6. right parenthesis ")"

Integer variable is one of the following:
● Integer variable name
● One dimensional array element
● Two dimensional array element

String constant is:
1. quota sign (")
2. sequence of printable other than quota sign
3. quota sign (")

Unsigned integer expression is one of the following:
● Unsigned integer constant
● Integer variable
● Integer function
● Integer expression followed by one of "+","-","*","/","%","^"

followed by Integer expression
● User function call
● Integer expression surrounded by parentheses "(", ")"

Integer expression is either Unsigned integer expression or Signed
integer expression

User function call is:
1. Integer variable name
1. "("
2. Parameters (Integer expressions and String expressions)

separated by comma
3. ")"

Signed integer expression is Integer unsigned expression preceded by
"-" or "+"

String expression is one of the following:
● String constant
● String variable name
● String function
● String expression followed by "+" followed by String

expression

 15.1 Declarations
Declaration is either Parameter declaration or General declaration

General declaration consists of
1. "DIM" command
2. any number of Variable declarations separated by commas or

User function declaration
3. CR/LF (newline)

Parameter declaration consists of
1. "LOCAL" command
2. any number of Local variable declaration, separated by

commas
3. CR/LF (newline)

Local variable declaration is one of:
● String variable declaration

Barix AG | 93/110

● Integer variable name

Variable declaration is one of:
● String variable declaration
● Integer variable name
● One dimensional array declaration
● Two dimensional array declaration

User function declaration is:
1. Integer variable name
2. left angle bracket "<" and GOSUB
3. Line number
4. right angle bracket ">"

String variable declaration is:
1. String variable name
2. left parenthesis "("
3. Unsigned integer constant
4. right parenthesis ")"

One dimensional array declaration is:
1. Integer variable name
2. left parenthesis "("
3. Unsigned integer constant
4. right parenthesis ")"

Two dimensional array declaration is:
1. Integer variable name
2. left parenthesis "("
3. Unsigned integer constant
4. comma ","
5. Unsigned integer constant
6. right parenthesis ")"

 15.1 Statements and functions

Statement is on one of the following:
● Conditional statement
● Unconditional statement
● FOR loop
● Handler setting

Unconditional statement is one of the following:
● Integer assignment
● String assignment
● Command call
● Function call

Statement delimiter is one of the following:
● colon ":"
● newline (CR/LF)

Integer assignment consists of:
1. Integer variable name
2. "="
3. Integer expression

String assignment consists of:
1. String variable
2. "="

Barix AG | 94/110

3. String expression

Command call is:
1. Command name, i.e. one of "CLOSE", "DELETE", "DELAY", "END",

"GOTO", "IOCTL", "LOCK", "MIDCPY", "MIDSET", "OPEN", "PLAY", "READ",
"RENAME", "SEEK", "SYSLOG", "TIMER", "TRAP", "WRITE", "LINK"

2. Respective parameters (Integer expressions and String
expressions) separated by comma

Function call is one of the following:
● Integer function
● String function

Integer function consists of:
1. Command name, i.e. one of "ASC", "CONNECTED", "END", "FIND",

"FILEPOS", "FILESIZE", "INSTR", "IOSTATE", "LASTLEN", "LEN",
"MEDIATYPE", "MIDGET", "NOT", "OR", "PING", "RANDOM", "RESOLVE",
"RMTPORT", "SHL", "SHR", "VAL", "XOR"

2. "("
3. Respective parameters (Integer expressions and String

expressions) separated by comma
4. ")"

String function consists of:
1. Command name, i.e. one of "CHR$", "LCASE$", " MD5$", " MID$",

"RMTHOST$","SPRINTF$", "STR$", "UCASE$",
2. "("
3. Respective parameters (Integer expressions and String

expressions) separated by comma
4. ")"

Conditional statement is one of the following:
● One line IF
● One line IF-ELSE
● Multiline IF
● Multiline IF-ELSE

One line IF consists of:
1. "IF"
2. Integer expression or Boolean expression
3. "THEN"
4. Unnumbered line

One line IF-ELSE consists of:
1. "IF"
2. Integer expression or Boolean expression
3. "THEN"
4. sequence of Statements separated by colons ":"
5. "ELSE"
6. Unnumbered line

Multiline IF consists of:
1. "IF"
2. Integer expression or Boolean expression
3. "THEN"
4. newline (CR/LF)
5. Sequence of Unnumbered lines and Numbered lines
6. "ENDIF"

Barix AG | 95/110

Multiline IF-ELSE consists of:
1. "IF"
2. Integer expression or Boolean expression
3. "THEN"
4. newline (CR/LF)
5. Sequence of Unnumbered lines and Numbered lines
6. "ELSE"
7. Sequence of Unnumbered lines and Numbered lines
8. "ENDIF"

Boolean expression is one of the following:
● Simple boolean expression
● One of the boolean functions "NOT", "OR", "AND", "XOR" with

parameters (Boolean expressions) in parentheses separated by
commas

Simple boolean expression is one of the following:
● String expression followed by one of "=","<>" followed by String

expression
● Integer expression followed by one of "<",">","=","<>","<=",">="

followed by Integer expression

FOR loop consists of:
1. "FOR"
2. Integer variable V
3. "="
4. Integer expression
5. "TO"
6. Integer expression
7. newline (CR/LF)
8. Sequence of Numbered lines and Unnumbered lines
9. "NEXT" with optional Integer variable V
10. newline (CR/LF)

Handler setting is one of the following:
● "ON CGI GOSUB" followed by Number line
● "ON UDP GOSUB" followed by Number line
● "ON TIMER 1 GOSUB" followed by Number line
● "ON TIMER 2 GOSUB" followed by Number line
● "ON TIMER 3 GOSUB" followed by Number line
● "ON TIMER 4 GOSUB" followed by Number line

Barix AG | 96/110

 19 Appendix A – obsolete or unimplemented
functions

These functions, which can be found in older BCL programs, are now considered
obsolete and replaced.

ISEQV (E1$, E2$)
This function has been used for string comparison in boolean expressions. It has
been replaced by the equal sign (=) as strings now can be matched directly, see
section 6.5.3 on page 23.

SYSTIME
Returns time in milliseconds since the last boot/startup.

This function supported in earlier versions is now replaced by the direct access to
the special variable _TMR_(0) which holds the content of the system timer
counting time in milliseconds.

Code example:
10 STIME=_TMR_(0)
SYSLOG STR$(STIME)
DELAY 1000

 GOTO 10

_ CMD_$ variable had been used to determine the next program to be started. This
functionality is currently provided by the END command.

EXEC function had been reserved for certain hardware dependent operations not
covered by the standard I/O functions. Currently, all possible I/O operations are
supported by other means so the EXEC function does not implement any
functionality.

INKEY$
Used to return the last characters received from the input buffer, or an empty
string if there were no characters on input. The same functionality can be
achieved using the standard I/O functions for the serial port.

INPUT [{ S0$ | Q$ } ,] { V | S$ }
Original function: Prints S0$ or Q$ as prompt (if not specified, prints the "?" mark),
waits for input from user, and sets a new value for long V or string S$ variable. If
this is a new variable name, creates the new default long or string variable.
Now the same functionality can be achieved using the standard I/O functions for
the serial port.

PRINT [[{ S$ | Q$ }] [{ , | ; }]] ...
Original function: Prints a list of arguments S$ or Q$ with delimiters. Delimiter ","
means printing the next argument from new 8-chars zone (tabulator). Delimiter ";"
means printing without spaces immediately after the last value. If no end
delimiters are specified, the next printing starts from a new line.
Now, the same functionality can be achieved using the standard I/O functions for
the serial port.

Timer 0
In addition to timers 1-4 there used to be timer 0 which worked as a "software
watchdog". Once the count of this timer expired the BCL program was terminated.
To prevent a program restart, the timer had to be periodically triggered with TIMER
0, E (e.g TIMER 0,5000 reset the watch dog timer for the following 5 seconds).

Barix AG | 97/110

The same functionality can be achieved using any other timer, if the handler
subroutine is programmed to terminate the program.

Code example:
TIMER 1,5000
....

5000 END

 19.1 Audio interface
The following audio modes are obsolete and no longer supported.

MODE:

MODE value mode

3 full-duplex PCM (16-bit signed, mono)

see the FLAG bits and chapter 8.1.3.4 above

4 full-duplex μ-Law

5 full-duplex A-Law

6-8 reserved

9 PCM stereo decoding (16-bit signed, stereo,
left channel first)

see the FLAG bits and chapter 8.1.3.4 above

QUALITY:
For full-duplex modes (modes 3, 4 and 5) specifies sampling rate in kHz – 8, 12, 24
or 32
For PCM stereo decoding the quality is either 44 for 44.1kHz sampling rate or 48
for 48kHz sampling rate.

Barix AG | 98/110

 20 Appendix B – BIN / DEC / HEX conversion

Hexadecimal digits have values from 0..15, represented as 0..9 and as A (for 10)
to F (for 15).

The following table can serve as a conversion chart:

Bin /DEC / Hex Table

Decimal Binary Hexadecimal
0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

To convert a binary value in a hexadecimal representation, the upper and lower
four bits are treated separately, resulting in a two-digit hexadecimal number.

Barix AG | 99/110

 1 Appendix C – BCL version 2

In the future release of the BCL language (version 2), the following will be changed.

Change 1:

INSTR (E, E1$, E2$)
Searches for E2$ in E1$ starting from the position indexed by E up to the end of
the string. On success it returns the position of the E2$ in E1$, counting from 1
(for E2$ at the beginning of E1$). Otherwise it returns 0. Search for an empty
string E2$ returns 0.

Change 2:
In BCL strings are indexed from 1 (not NULL terminated).

Barix AG | 100/110

Alphabetical Index

address resolution.......................69
arrays...

binary....................................15
integer..................................12
search...................................12

audio..
balance..................................62
bass.......................................62
bitrate...................................60
buffer level...........................60
close......................................66
delay......................................51
device....................................51
flags......................................52
flushing buffer......................66
free bytes..............................55
gain.......................................62
input source..........................62
link..66
link (example).......................90
link (examples).....................68
loudness................................62
mixer.....................................63
mode...............................51, 98
open......................................51
output gain...........................62
parameters...........................61
PCM modes............................54
peak levels............................60
playing file (example)..........85
playing RTP (example)..........86
raw data mode......................55
recording (example).............85
RTP..................................55, 57
RTP data mode......................55
RTP receiver (example)........90
status....................................59
status (example)...................90
treble....................................62
tunneling (examples)...........68
tunnelling..............................66
tunnelling (example)............90
volume..................................63

CGI..
BAS.cgi..................................75
basic.cgi................................76
event.....................................25
handling................................76
ON CGI...................................25
variable setting....................75
CGI$ variable.....................80

command..
CLOSE........................31, 36, 66
DELAY....................................24
DELETE..................................39
DIM..........................7, 11p., 15
ELSE......................................23
END...................................8, 21

ENDIF.....................................23
FOR..21
GOSUB...................................22
GOTO..............................8, 21p.
IF 22
INPUT (obsolete)...................97
LINK.......................................66
LOCK................................26, 80
NEXT......................................21
ON CGI...................................25
ON ERROR..............................26
ON TIMER..............................25
ON UDP..................................25
OPEN.....................................31
PRINT (obsolete)...................97
RENAME.................................39
RETURN.............................8, 22
SEEK......................................39
SYSLOG..................................82
THEN......................................22
Timer.....................................97
TO..21
WRITE...........................31, 35p.

comments.....................................7
delimiters......................................7
directory...

listing....................................40
number of entries.................40
pointer position....................40
seek.......................................40
USB filesystem......................40

display..
example.................................43
interface...............................42

escape sequences........................14
events...................................24, 30

ON CGI...................................25
ON ERROR..............................26
ON TIMER..............................25
ON UDP..................................25

expression......................................
boolean.................................23
integer..................................11
string.....................................14

file..
deletion.................................39
flash reading.........................41
flash writing..........................42
line read................................32
position...........................39, 42
seek.................................39, 42
size..................................39, 42
USB filesystem......................39
USB playing (example).........85
USB writing (example)..........85

function..
ASC..17
CHR$......................................17

Barix AG | 101/110

CONNECTED...........................37
EXEC (obsolete)....................97
FILEPOS...........................39, 42
FILEPOS.................................40
FILESIZE........33, 37pp., 42, 55
FIND......................................12
INKEY$ (obsolete).................97
INSTR............................16, 100
IOCTL.....................................71
IOSTATE.................................71
ISEQV.....................................97
ISEQV (obsolete)...................97
LASTLEN.................33p., 40, 59
LCASE$..................................16
LEN..16
MD5$.....................................70
MEDIATYPE............................33
MID$......................................16
MIDCPY..................................19
MIDGET..................................19
MIDSET..................................19
PING......................................69
RANDOM................................69
READ............................31, 55p.
RESOLVE................................69
RMTHOST$......................34, 37
RMTPORT.........................34, 37
SEEK................................40, 42
SPRINTF$...............................17
STIME....................................17
STR$......................................17
SYSLOG..................................69
SYSTIME (obsolete)..............97
TRAP...................................72p.
UCASE$..................................16
user defined..........................29
VAL..17

integer..
array......................................12
assignment...........................94
constant................................11
data size...............................80
expression......................11, 93
function...........................11, 95
maximal dimension of arrays

..80
number of variables.............80
scaling...................................12
variable...........................11, 93
variable name.......................92

IR interface..................................44
keyboard.....................................44
labels..21
lookup table................................12
MD5 sum.....................................70
multicast.....................................35
one wire..

1-wire interface....................46
device table..........................46
example.................................49
interface...............................47
transaction............................47

46
operation..

AND.................................13, 23
assign..............................11, 14
integer..................................11
NOT.................................13, 23
OR....................................13, 23
SHL..13
SHR..13
string.....................................14
XOR.................................13, 23

protocol..
audio.....................................51
Audio.................................2, 51
Serial.................................2, 37
SETUP....................................38
TCP....................................2, 35
UDP..33
Wiegand................................45

RTP...
data mode.............................55
decoder.................................55
dropped frames....................60
duplicated frames.................60
lost frames............................60
maximum payload size.........56
payload types.......................57
player (example)...................86
sender (example)..................86

serial..
bytes available.....................38
configuration........................37
gateway (example)...............86
line read................................32
on the Barionet.....................38

setup...38
SNMP..

integers.................................72
protocol.................................72
text strings...........................72
trap - audio (example)..........73
trap - Barionet (example).....72
traps......................................72

string..
assignment...........................94
case.......................................16
constant..........................14, 93
default size...........................80
expression......................14, 93
formatting.............................17
function...........................16, 95
integer conversions..............17
length....................................16
number of variables.............80
string to time conversion.....17
substring.......................16, 100
variable.................................14
variable name.......................92

strings...14
subroutines.................................22
Target platform.............................3
TCP...

Barix AG | 102/110

blocking open.......................36
client example................85, 89
close......................................36
line read................................32
listening socket.................35p.
non-blocking open................36
protocol.................................35
radio player (example).........89
receiving...............................36
sending.................................85
serial gateway (example).....86
server example.....................86

time..24
conversion.............................17
delay......................................24
RTC..24
system time..........................24
timers....................................24
to string conversion.............18

tokenizer.......................................3
UDP..

client example......................86
event.....................................25
multicast...............................35
protocol.................................33

receiving...............................34
sending.................................34
sending to multiple

destinations......................35
variable..

array of integers...................12
DTS_......................................24
integer..................................11
string.....................................14
ARG..............................29, 80
CGI$....................................76
CMD$..................................97
ERL.....................................26
ERR.....................................26
_M..16
TMR....................................25

web page..
BCL specific HTML tags........74
calling BCL from a webpage.75
displaying variables.............74

Wiegand reader...............................
26-bit reader.........................45
26-bit reader (example).......46
data format...........................45
sample program....................88

Barix AG | 103/110

Legal Information

© 2010-2016 Barix AG, Zurich, Switzerland.

All rights reserved.

All information is subject to change without notice.

All mentioned trademarks belong to their respective owners and are used for
reference only.

Barix, Annuncicom, Barionet, Exstreamer, Instreamer, SonicIP and IPzator are
trademarks of Barix AG, Switzerland and are registered in certain countries.

For information about our devices and the latest version of this manual please visit
www.barix.com.

Barix AG
Seefeldstrasse 303
8008 Zurich

SWITZERLAND

Phone: +41 43 433 22 11
Fax: +41 44 274 28 49

Internet

web: www.barix.com

email: sales@barix.com

support: support@barix.com

Barix AG | 104/110

mailto:support@barix.com
mailto:sales@barix.com
http://www.barix.com/
http://www.barix.com/

	1 Introduction
	1.1 Notation
	1.2 Supported devices

	2 Development Tools
	2.1 Editor
	2.2 Tokenizer
	2.3 Web2cob
	2.4 Program upload
	2.5 Batch files

	3 BCL basics
	3.1 Starting with BCL
	3.1.1 Simple program
	3.1.2 Comments
	3.1.3 Command delimiters
	3.1.4 Multi-line commands
	3.1.5 Recommended structure of BCL programs

	3.2 Syntax overview
	3.2.1 Data types and variables
	3.2.2 Procedures and functions
	3.2.3 Conditional statements
	3.2.4 Program flow control

	4 Integers
	4.1 Integer constants
	4.1 Integer variables
	4.2 Integer expressions
	4.3 Integer functions
	4.4 Real numbers
	4.1 Integer Arrays
	4.1.1 Array search

	4.2 Bit operations

	5 Strings
	5.1 String constants
	5.2 Escape sequences
	5.3 String expressions
	5.4 String variables
	5.5 Binary arrays
	5.6 String functions
	5.6.1 String/Integer conversions
	5.6.2 Formatted conversions - SPRINTF$
	5.6.2.1 Integer to string conversions
	5.6.2.2 Version information
	5.6.2.3 Network information
	5.6.2.4 Time to string conversion

	5.7 Binary array functions

	6 Execution flow control commands
	6.1 The END command
	6.1 Labels
	6.2 Unconditional jump
	6.3 The FOR-NEXT loop
	6.4 Subroutines
	6.5 Conditional statements
	6.5.1 Multiline IF
	6.5.2 Single line IF
	6.5.3 Boolean expressions
	6.5.4 Multiple branching depending on an integer value

	6.6 Time
	6.7 Events
	6.7.1 Timers
	6.7.2 UDP event
	6.7.3 CGI event
	6.7.4 Handling I/O events
	6.7.5 Error Handling

	6.8 The LOCK command

	User defined functions
	7 I/O stream functions
	7.1 Function overview
	7.1.1 Open and close
	7.1.1 Write
	7.1.2 Read
	7.1.2.1 Line read
	7.1.2.2 Read timeout
	7.1.2.3 Pattern search

	7.1.3 Stream types
	7.1.4 Other functions

	7.2 The UDP network protocol
	7.2.1 Receiving UDP packets
	7.2.2 Sending UDP packets
	7.2.3 Multicast

	7.3 The TCP network protocol
	7.3.1 Listening socket
	7.3.2 Blocking TCP connection
	7.3.1 Non-blocking TCP connection
	7.3.1.1 Non-blocking TCP write

	7.3.2 TCP close

	7.4 Serial port
	7.5 SETUP
	7.6 The USB filesystem (not supported on Barionet)
	7.6.1 File access
	7.6.2 Directory access
	Short filenames
	Long filenames, extended listing

	7.7 The local flash filesystem
	7.7.1 Reading files
	7.7.2 Writing files (Barionet only)

	7.8 Keyboard and display interface (audio devices only)
	7.8.1 Display
	7.8.2 Keyboard
	7.8.3 IR interface (audio devices only)

	7.9 The Wiegand reader (Barionet 100 only)
	7.9.1 26-bit Wiegand reader

	7.10 1-wire interface (Barionet 50 only)
	7.10.1 Device addresses
	7.10.2 File interface
	7.10.3 Bus transactions
	7.10.4 Example

	8 Audio interface (audio devices only)
	8.1 Opening audio
	8.1.1 The MODE parameter – audio format
	8.1.2 The FLAGS parameter – open options
	8.1.3 The QUALITY parameter – sampling rate, etc.
	8.1.3.1 MP3 decoding
	8.1.3.2 MP3 encoding
	8.1.3.3 MP3 encoding with bitrate
	8.1.3.4 Uncompressed modes

	8.1.4 The DELAY parameter – delayed playback
	8.1.5 RTP encoder parameters FRAME_DURATION and SSRC

	8.2 Data formats
	8.2.1 PCM audio data
	8.2.2 Raw data mode
	8.2.3 RTP data mode
	8.2.3.1 Initial delay
	8.2.3.2 Frame duration
	8.2.3.3 SSRC

	8.2.1 RTP payload types

	8.3 Reading audio status
	8.4 Setting audio parameters
	8.5 Flushing decode buffer
	8.6 Flushing encode buffer
	8.7 Closing audio
	8.8 Audio tunelling (audio devices only)
	8.8.1 File playback
	8.8.2 Decoder
	8.8.3 Detecting end of stream
	8.8.4 Encoder
	8.8.5 Examples

	9 Miscellaneous functions
	9.1 Network functions
	9.2 Diagnostic functions
	9.3 Cryptographic functions

	10 Direct hardware access
	11 SNMP Interface
	11.1 Integers
	11.2 Text strings (audio devices and Barionet 50)
	11.3 Traps
	11.3.1 Barionet 100
	11.3.1 Audio devices and Barionet 50

	12 WEB interface
	12.1 HTML tags
	12.1.1 Displaying variables in webpages
	12.1.2 Calling a subroutine from a webpage

	12.1 Variable setting by CGI
	12.2 CGI handling in the BCL

	14 Preprocessor
	12.1 Preprocessor directives
	12.2 Using the preprocessor

	13 Interpreter information
	13.1 Execution speed
	13.2 Runtime environment limitations
	13.1 System variables

	14 Debugging
	14.1 Error messages

	17 Example programs
	14.1 Playing an MP3 file from the USB filesystem
	14.2 Record audio into an MP3 file
	14.3 Sending an email
	14.4 Streaming MP3 over RTP
	14.5 RTP Sender
	14.6 TCP serial gateway
	14.7 The Wiegand reader
	14.1 Simple internet radio player
	14.2 RTP player with statistics

	15 Syntax summary
	15.1 Variables, Constants, Expressions
	15.1 Declarations
	15.1 Statements and functions

	19 Appendix A – obsolete or unimplemented functions
	19.1 Audio interface

	20 Appendix B – BIN / DEC / HEX conversion
	1 Appendix C – BCL version 2
	Alphabetical Index
	Legal Information

